"Arnold V" Specification

"Arnold V" Specification
Issue 1.4
12th March 1990
Amstrad PLC
© Copyright Amstrad plc

PRODUCT RANGE - AMSTRAD HOME COMPUTERS

1) WHY THE NEW RANGE?

- The changing home computer market.
- Enhanced technology:
- Number of colours
- Sound quality
- Software media type
- Redesign cosmetic styling

2) THE 1990 RANGE

- Games console model number GX4000
- 464 PLUS built-in cassette and ROM cartridge
- 6128 PLUS built-in disk drive and ROM cartridge
- MM12 - monochrome 12" monitor
- CM14 - colour 14" monitor

3) MARKETING PACKS

- GX4000
- Console
- Mains adaptor
- Paddle control unit x 2
- Gift box
- 464 PLUS
- Computer
- 6128 PLUS
- Basic/* Game Cartridge
- Paddle Control unit
- Gift box
* Free game to be advised

4) AVAILABILITY

- All products delivered by late August.

	GX4000	$464+$	$6128+$
Processor	Z80	Z80	Z80
Memory	64 k	64 k	128 K
Configuration	ROM cartridge	Cassette/ROM Cartridge	$3 "$ disk/ROM Cartridge
Colours	32 from 4096	32 from 4096	32 from 4096
Softscroll	$*$	$*$	$*$
Splitscreen	$*$	$*$	$*$
Sprites	16	16	16
Sound	Stereo ASG	Stereo ASG	Stereo ASG
Joystick Ports:			
Digital	x2	x2	x2
Analogue	x1	x1	x1
Monitor Choice	Mono/Colour	Mono/Colour	Mono/Colour

6) LAUNCH TIMETABLE

Month	Activity
April	Presentation to major customers in launch market
May	Production start up
End June/July	Press conference in Paris for leading home computer publicatons. maximum 10 Editors per market
August	Software available
September	Launch in all markets across specialist and consumer press. Volume supplies in retailers
October	Advertising in home computer/youth publications
November/December	Heavy-weight advertising - TV, National Press.

CONTENTS

1 PRODUCT RANGE OVERVIEW

1.1 Common Features
1.2 Amstrad 464 Plus
1.3 Amstrad 6128 Plus
1.4 Further Variants

2 TECHNICAL SPECIFICATION

2.1 Hardware Sprites
2.2 Colour palette
2.3 Split Screen facility
2.4 Programmable Raster Interrupt
2.5 Soft scroll facility
2.6 Automatic feeding of sound generator
2.7 Vectored interrupts
2.8 Enhanced ROM cartridge support
2.9 Analogue paddle ports
2.10 PAL subcarrier locking
2.11 Locking of enhanced features
2.12 Eight-bit printer support
2.13 Floppy disc data separator
2.14 Power Requirements

3 SOFTWARE SPECIFICATION

3.16128
3.2464

4 MECHANICAL SPECIFICATION

5 DISPLAY DEVICES

5.1 Monitors
5.2 Modulator/Power Supply units

6 NATIONAL VARIANTS

7 PACKING LIST
APPENDIX I - New Register Map
APPENDIX II - Connector pinouts

1 PRODUCT RANGE OVERVIEW

This project will provide a more sophisticated and stylish replacement for the existing CPC464 and CPC6128 computers. This will be achieved by:

- Redesigning the ASIC and main PCB to incorporate a number of new features
- Restyling the casework to provide a more modern appearance.

1.1 Common Features

The casework will consist of a new two piece set of plastic mouldings. This will contain a horizontally mounted, double-sided PCB assembly on which are mounted most of the electronics for the computer. A small, vertically mounted, daughter PCB will provide the connector for a ROM cartridge. Any size ROM cartridge from 16 k x 8 up to 512 k x 8 can be installed. The firmware, fitted to the main PCB on earlier CPC computers, is supplied in a ROM cartridge.

All expansion and peripheral device connectors will be mounted on the main PCB. In addition to the connectors used on the existing CPC range, there will be:

- Separate connectors for the two joysticks, replacing the old daisy-chain arrangement. However, the daisy chain system can still be used on the Joystick 1 connector if required.
- An additional 15-way female D-type connector will provide four analogue input channels and
access to the four existing "fire" buttons. This will be pin compatible with the games control port on the PC200 (PC-8) computer.
- All PCB edge connectors will be replaced by types that are easier to screen against spurious RF emission. The printer connector is a 25 -way female D type, as used on the PC1640 etc, and the expansion connector is a 50 -way Delta (Centronics style) type, as currently used in Germany.
- The 6128 's TAPE socket will be replaced by a 6 pin RJ-11 type for the light gun.

The computer will provide stereo sound via additional pins on the monitor connector, as well as from the stereo sound socket.

All existing CPC electrical features will be provided, plus some new features. There will be complete backward compatibility except that:

- The border colour will be undefined at power-on reset
- The new 6128 version will have no tape socket

The following new features will become available once a software "lock" has been opened, thus preventing existing CPC software from accidentally invoking them:

- There will be 16 Sprites, each consisting of 16×16 high resolution pixels, in fifteen colours separate from the main screen colours. Each sprite can be magnified in X or Y, moved around the screen, and turned on or off independent of the main screen. Sprite pixels can be transparent, and sprites have a fixed order of priority (i.e. "depth"), so that they can pass in front of each other, in front of the main screen, and behind the border.
- The colour palette will be extended to allow simultaneous display of up to 32 colours (16 main +15 sprite + border) from a palette of 4096, rather than the current 17 from 27.
- Additional screen controls will be added, to allow split-screen operation and smooth scrolling to be used.
- An automated sound generation process will allow generation of more complex sound effects with greatly reduced software overhead.
- Some other internal features to ease implementation of better games software, described in the technical specification section.

The functions of display monitor and power supply are provided by either:

- A restyled range of monitors, consisting of a white tube monochrome monitor MM12 and an improved colour monitor CM14.
- An MP2-style modulator/power supply unit.
- A Peritel adaptor/power supply unit.

The old CPC6128 keyboard is used, except that the colour scheme will be changed and the connecting cable will exit in a different location.

1.2 Amstrad 464 Plus

This variant will have an integral cassette tape drive, and 64k bytes of dynamic RAM. It will be supplied with a ROM cartridge containing the system firmware plus the BASIC language, disk firmware and a game, although it is not possible to select the disk firmware.

1.3 Amstrad 6128 Plus

This variant will have an integral 3" floppy disk drive (5V only) plus a 36-way Delta (Centronics style) expansion socket allowing a second $3^{\prime \prime}$ drive to be added. The 6128 Plus will be supplied with a ROM cartridge containing the system firmware plus the BASIC language, disk firmware and a game. 128k bytes of dynamic RAM will be fitted to the main PCB.

1.4 Further Variants

Unlike the existing CPC range, the size of dynamic RAM and whether or not a disk drive is installed are separately configurable options. It is therefore possible to produce a "4128" (128k diskless) or "664" (64k with disk) variant. Also, it is possible to increase the number of analogue input channels to eight.

2 TECHNICAL SPECIFICATION

The technical specification is essentially similar to the existing CPC 464/6128 range, with some enhancements. This specification should therefore be read in conjunction the "Amstrad CPC 6128 Software Interface Spec" Issue 2, 17th February 1985. New features will be added by changes to the ASIC and main PCB circuitry.

The overriding concern in the specification of this new product range has been the need for total backward compatibility with the existing CPC range. Many of the new features within the ASIC employ new registers, which can be mapped to replace the page of RAM from 4000 to 7 FFFh in the CPU memory map, by setting a bit pattern in an I/O port. Before this port is allowed to "exist", a deliberately obscure I/O sequence is needed. This mechanism protects existing software from accidents such as killing its own RAM page.

The following new features are to be provided by changes to the ASIC device and the main PCB electronics:

2.1 Hardware Sprites

Sixteen hardware sprites will be provided by the ASIC.
Each will consist of an array of 16×16 pixels of four bits per pixel. A sprite pixel will be "transparent" when it has a value of zero, thus allowing 15 sprite colours. The sprite pixel data will exist in memory mapped registers within the ASIC, from address 4000h. The lower four bits of each byte will contain the data for a single pixel. The first 16 bytes contain the data for the upper scan line, starting at the top left hand corner of the sprite. 15 more similar scan lines of 16 pixels each will follow, thus each 256 (0100 h) byte block of register space will contain one sprite. When the data for a sprite is read or written, that sprite will be removed from the display for the duration of the access. Thus sprite data should only be accessed during retraced time or while the raster is scanning somewhere else, otherwise there is a risk of disruption of the display.

The position on screen of the upper left corner of each sprite, and the X and Y magnification, will be defined by five registers for each sprite:

A2	A1	A0	
0	0	0	X position LSB
0	0	1	X position MSB
0	1	0	Y position (scan line) LSB
0	1	1	Y position MSB
1	0	0	bits $3,2=$ X magnification, bits $1,0=$ Y magnification

The position registers will be read/write, and will accept numbers in two's complement form. They should only be changed during retrace or when a sprite is off. Data written to these registers should be between +767 and -256 for X , and between +255 and -256 for Y , otherwise the sprites will appear in strange positions. With standard 6845 timing (64us scan lines, 200 visible lines), "on screen" positions at
maximum sprite magnification are -64 to +639 in x and -63 to +199 in y. A sprite will not be displayed if either the vertical or the horizontal positions outside the on screen range. The magnification registers are cleared to zero at reset, and are write only. They are coded as:

0	0
0	prite not displayed
0	1
1	Magnification x1
1	0
1	Magnification x2
1	Magnification x4

The sprite control registers will exist on 8 -byte boundaries from addresses 6000 to 607 Fh for sprites 0 to 15 respectively.

All sprite characteristics will be independent of the main screen mode, the unmagnified pixel size being as for screen mode 2 (640x200). Sprite colours will be defined by fifteen entries in the colour palette (see section 2.2 below). Thus sprites can be in different colours and resolutions from the rest of the screen. Sprites may overlay with each other or the border, and are prioritized so that the border has the highest priority, followed by sprites 0 to 15 in sequence, then the main screen data. Thus sprites always appear "in front of" the main screen and "behind" the border.

2.2 Colour palette

The existing colour palette within the ASIC, which selects 17 of 27 possible colours, will be replaced by a new palette which selects 32 of 4096 colours. This will be accessed through two ports. The primary port will provide full access via 32 registers of 12 bits, i.e. 4 bits each for red, green and blue.

For compatibility with existing models a secondary port will provide access to the first seventeen registers only (i.e. main screen colours and border), via the existing five bit interface. A block of logic will map the five bit colour written to the "palette memory" location onto the equivalent 12 bit colour, which is then written to the palette at the address selected by the "palette pointer register".

The primary palette port is between addresses 6400 and 643 Fh , each pair of bytes representing one entry in the palette. The most significant byte will contain the GREEN information in the lower nibble (D3-D0), and the other byte will contain RED (D7-D4) and BLUE (D3-D0).

This ordering of colours has been selected to give the most consistent grey scale possible on a monochrome display (green is brighter than red, which is brighter than blue). However, because of the need to retain compatibility with the existing 27 level grey scale, the colours are summed with a 9:3:1 weighting rather than the $256: 16: 1$ weighting which would be required to make the 12 bit word fully monotonic.

The primary palette registers appear in RAM low byte first, so that they can be loaded via a single 16 -bit LD instruction, e.g. LD (6400 h),0F00h would set the main colour zero to bright green. The palette will be dual ported so that there are no restrictions on when it can be accessed.

The primary port palette registers will be:
$6400-641$ Fh main screen colours 0 to 15
6420-6421h border colour
$6422-643 \mathrm{Fh}$ sprite colours 1 to 15

The secondary port registers will be:
$00-0 \mathrm{~F}$ main screen colours 0 to 15
10-1F border colour

2.3 Split Screen facility

Three new memory mapped registers will be added within the ASIC, to provided a horizontally split screen facility. One at address 6801 h will define the scan line after which the screen split occurs. A value of zero (as at power on reset) will turn this feature off.

The other register pair at 6802h and 6803h define the start address in memory (similar to R12 and R13 respectively in the 6845 , and therefore high byte first) which represents the location in memory from which to start displaying data for the lower screen. This will allow the lower part of the picture to come from a separate memory area, and be separately scrolled. However, note that soft scrolling (Section 2.5 below) will act on the whole screen.

Note that care should be taken with programming this facility such that the screen split does not alter the function of address bits A1-A8 and the dynamic memory refresh is not upset. This can be accomplished by setting the start of the second screen to lie on a 16k boundary. Note that the value in register pair $6802 \mathrm{~h} / 6803 \mathrm{~h}$ is the first displayed line, and not the start address of the 16 k block.

2.4 Programmable raster interrupt

A new 8 bit memory mapped register (PRI) will be added within the ASIC at address 6800 h , which is cleared at power up. If zero, the normal raster interrupt mechanism will function as before. Otherwise, an interrupt will occur instead at the end of the scan line specified. In either case, this facility can provide a vectored interrupt (see section 2.7 below). The PRI can be reprogrammed as required to produce multiple interrupts per frame.

2.5 Soft scroll facility.

A memory mapped 8 bit soft scroll control register (SSCR) will be added within the ASIC at 6804 h , to allow scrolling of the screen by pixels rather than just by characters as at present. It will be cleared at reset. This soft scrolling mechanism will affect the whole of the main screen, regardless of the split screen facility, but it will not affect sprites.

The lower four bits (D3-D0) of the SSCR define a horizontal delay of between 0 and 15 bits i.e. high resolution (mode 2) pixels. This shifts the screen image to the right by the value programmed, "losing" pixels behind the right border and instead displaying random data on the left. It is left to the programmer to ensure that the delay value is always a multiple of the number of bits per pixel.

The next three bits (D6-D4) will be added to the least significant three bits of the scan line address, thus determining which of the eight 2 k blocks contains the data for the first scan line on the screen. The effect of this is to shift the display up by the number of scan lines programmed, "losing" what would otherwise be the first lines to be displayed, and instead appending extra lines to the bottom of the screen.

The most significant bit (D7), when set, causes the border to extend over the first two bytes (16 high resolution pixels) of each scan line, masking out the bad data caused by the horizontal soft scroll. Software which intends to use horizontal soft scroll should have this bit always set, so that the screen width does not keep changing.

Setting the SSCR to zero, as at reset, (i.e. no offsets, normal border), will of course effectively disable the
soft scroll.

2.6 Automatic feeding of sound generator

An automated process will be added to feed data to the sound generator from three instruction streams in main memory without CPU intervention. Three separate channels will each fetch one 16 -bit instruction during horizontal retrace time. These instructions must be in usual Z-80 format, i.e. least significant byte first, and must be aligned to word boundaries (i.e. address of first byte must be even). Once the three instructions have been captured, they will then be executed sequentially. The maximum achievable update rate to the PSG is thus equal to the horizontal scan rate of 15.625 kHz per channel.

The available commands are:

0RDDh	$\begin{aligned} & \text { LOAD } \\ & \text { R,D } \end{aligned}$	Load 8 bit data D to PSG register $\mathrm{R}(0<=\mathrm{R}<=15)$
1NNNh	PAUSE N	Pause for N prescaled ticks ($0<\mathrm{N}<=4095$)
2NNNh	$\begin{aligned} & \text { REPEAT } \\ & \mathrm{N} \end{aligned}$	Set loop counter to N for this stream $(0<\mathrm{N}<=4095)$, and mark next instruction as loop start.
3 xxxh	(reserved)	Do not use
4000h	NOP	No operation (64us idle)
4001h	LOOP	If loop counter non zero, loop back to the first instruction after REPEAT instruction and decrement loop counter.
4010 h	INT	Interrupt the CPU (see section 2.7 below)
4020 h	STOP	Stop processing the sound list.

Note that :

1. REPEAT Loops cannot be nested. Only one is allowed to be active per instruction stream at any time.
2. REPEAT 0 and PAUSE 0 instructions will have no effect, i.e. they are equivalent to NOP.
3. Control group (4 xxxh) instructions can be logically ORed to produce more complex instructions, e.g. $\operatorname{INT} \mid$ STOP $=4030 \mathrm{~h}=$ Interrupt and stop.
4. The STOP instruction will leave the source address register pointing to the next instruction, so that the instruction stream can be continued after CPU intervention.
5. The argument field (N) of the REPEAT instruction is actually the number of times the loop is taken. The block of code between REPEAT and LOOP instructions is therefore executed $\mathrm{N}+1$ times.

A DMA control and status register (DCSR) will control which channels are currently enabled, and also tell the CPU which channel is interrupting, to allow use of this facility in the non-vectored Z80 interrupt mode 1. The channel enable bits in this register enable each "DMA" channel separately, and can be set by the CPU, and cleared by either the CPU, a STOP instruction, or power on reset. The interrupt bits will be set when a channel is requesting an interrupt, and cleared when the CPU writes a "1" to the appropriate bit, or by an interrupt acknowledge cycle in the vectored mode (see section 2.7 below)

The control and status register bits are:

D6	R/W	Channel 0 interrupt
D5	R/W	Channel 1 interrupt
D4	R/W	Channel 2 interrupt
D3		Unused (write 0)
D2	R/W	Channel 2 enable
D1	R/W	Channel 1 enable
D0	R/W	Channel 0 enable

Each channel will have a 16 bit source address register (SAR) and an 8 bit pause prescaler register (PPR). These will be memory mapped, from address 6 C 00 h , as follows:

6 C 00 h	Channel 0 address, LSB
6 C 01 h	Channel 0 address, MSB
6 C 02 h	Channel 0 prescaler
6 C 03 h	unused
$6 \mathrm{CC} 04-6 \mathrm{C} 07 \mathrm{~h}$	Channel 1, as above
$6 \mathrm{C} 08-6 \mathrm{C} 0 \mathrm{Bh}$	Channel 2, as above
6 C 0 Fh	Control and Status register

The SAR must be loaded by the CPU with a physical address between 0000 h and FFFEh. This means that the most significant two bits select which pages 0 to 3 of the DRAM is used, and the remaining bits are the address relative to the page start. The DMA process is not affected by DRAM mapping register. Note that the least significant bit of the address is ignored, and the instructions are always fetched from word boundaries.

The pause prescaler will count $\mathrm{N}+1$ scan lines (where N is the value written by the CPU), giving a minimum tick of 64 us , and a maximum of 16.384 ms . When set nonzero by a PAUSE instruction, the pause counter for a particular channel will be decremented every tick until it reaches zero. Therefore, if the PPR is set to a value N and a PAUSE M instruction is executed, the total delay time between the instruction before the PAUSE and that following the PAUSE will be $\mathrm{M} *(\mathrm{~N}+1) * 64$ us. Pauses of between 64us and 67s may thus be generated.

The ASIC will arbitrate accesses to the parallel interface device between the "DMA" channels and the CPU, allowing only one to access it at a time. CPU accesses to the 8255 could be held off by means of wait states for up to a 8 microseconds if the "DMA" channel is currently executing a LOAD instruction. After a LOAD is executed, the ASIC must put the PSG address register back as it was before. To achieve this the 8255 parallel peripheral interface and the 74LS145 decoder will be integrated into the ASIC.

The exact timing is based on lus cycles as follows. After the leading edge of HSYNC from the 6845, there is one dead cycle followed by an instruction fetch cycle for each channel which is active (i.e. enabled and not paused). The execute cycles then follow for each active channel. All instructions execute in one cycle, except that LOAD requires at least 8 cycles. An extra cycle is added to a LOAD if the CPU is accessing the 8255 , or two extra cycles if the CPU access was itself a PSG register write.

2.7 Vectored interrupts

The ASIC will produce interrupts from four sources: the raster interrupt and the three sound generator
"DMA" channels. The ASIC will always supply a vector which can be used by the CPU in interrupt mode 2 or ignored in mode 1.

The top 5 bits of the vector will be supplied form bits D7-D3 of a memory mapped interrupt vector register (IVR) at address 6805 h in the ASIC, and the next two bits will determine the source of the interrupt.

Bit 0 of the vector will always be zero.

D 2	D 1	D 0	
0	0	0	"DMA" channel 2 interrupt vector
0	1	0	"DMA" channel 1 interrupt vector
1	0	0	"DMA" channel 0 interrupt vector
1	1	0	Raster interrupt vector

The value written to bit D0 of the IVR controls whether sound channel interrupts are automatically cleared, but has no effect on the vector itself. The contents of register 6805 h are undefined at reset, except that bit D0 will be set to 1 . Software should always set up the IVR before placing the CPU in vectored mode.

The interrupts are prioritiesed in a fixed sequence. The raster interrupt has the highest priority, followed by sound channels 2 to 0 respectively. For compatibility with earlier models, the raster interrupt is reset either by a CPU interrupt acknowledge cycle, or by writing a 1 to bit D4 of the mode and ROM enable register. The sound channel interrupts are cleared by writing a 1 to the relevant bit in the DCSR. To simplify vectored interrupt systems, they may also be cleared automatically by a CPU interrupt acknowledge cycle. This feature is enabled by writing a 0 to bit D0 of IVR.

Bits D6-D4 of the DCSR are set if interrupts from sound channels 0 to 2 repspectively are active. Bit D7 will be set if the last interrupt acknowledge cycle was for a raster interrupt. These bits can be ignored by software which uses vectored interrupts, or by software which does not use the DMA channels. However, software which uses DMA interrupts in non-vectored mode must inspect these bits, giving highest priority to the raster interrupt, because this interrupt is cleared automatically. Failure to observe this requirement may result in raster interrupts being missed. Also, the least significant bit of the vector register must be "1" (as at reset), otherwise bits D4-D6 of the DMA status register will be cleared before the CPU gets a chance to read them!

Software which uses interrupts from expansion cards must always use Z80 non-vectored interrupt mode 1, because the expansion bus does not support vectored interrupts.

To summarize, vectored software should place a valid vector $(\mathrm{D} 0=0)$ into the IVR. The hardware will supply a different vector for each interrupt source, and all interrupts are acknowledge automatically.

Non vectored software must write a "1" to bit D0 of the IVR, or leave it in it's reset state. Interrupt service software must examine bit D7 of the DCSR first, followed by bits D4-D6 (in any sequence) to identify the interrupt source. DMA interrupts must be acknowledged by writing a "1" to the relevant DCSR bit.

2.8 Enhanced ROM cartridge support

Currently, 32 k of firmware ROM exists in two 16k blocks. The low block is at addresses 0000 to 3 FFFh , and the high block at C000 to FFFFh. Expansion ROMs were mapped into C000 to FFFFh by writing a code to I/O address DFxxh. The disk ROM was code 0 or 7 , depending on the state of an expansion signal.

The new range will have no on board ROM, but will instead have a cartridge slot which can support ROM cartridges of up to 4 Mbits (512 k bytes, or 32 pages of 16 k bytes). This will mean that cartridge games cannot be copied, because there is no firmware available when the game is installed. However, any software house producing a game where the intermediate state of play or high score table can be saved must produce their own driver software.

The upper 5 ROM cartridge address lines will be controlled by the ASIC via the existing ROM mapping port (at DFxxh), and hence will define which of the 32 pages are mapped to the upper ROM block (C000 to FFFFh). The machine will be supplied with a ROM cartridge containing the firmware and BASIC, and, where applicable, the disk ROM.

For values less than 128 written to the mapping port, the "BASIC" page of the cartridge will always be selected at the high ROM block address, unless the value last written to the mapping port matches the current disk ROM code (i.e. either 0 or 7), in which case the "Disk" page will be selected. For values greater than 127, the lower five bits will set the cartridge ROM page number directly, so that the cartridge may be addressed at pages 128-159.

The existing expansion ROM mapping scheme uses port DFxxh and ROMDIS on the expansion bus, will still functions. The only change will be that ROMDIS can now disable the disk ROM, and selecting the disk ROM will not cause ROMDIS to be activated. An expansion card ROM mapped at any page takes priority over the same page number in the cartridge.

In addition, new bits will be defined in the mode and ROM enable (MRER) register at I/O address 7Fxxh. Currently, D7 $=1$ and D6 $=0$ to select this register, and D5 should be 0 . It has been proposed that, if this register is written with $\mathrm{D} 5=1$, the bottom five bits will be redefined. This new register will be known as the secondary ROM mapping register (RMR2). D4 and D3 will control the address of the low bank, and also whether the memory mapped register page is enabled at 4000 to 7 FFFh .

D4	D3	
0	0	Low bank ROM $=0000$ to 3 FFFh, register page off
0	1	Low bank ROM $=4000$ to 7 FFFh , register page off
1	0	Low bank ROM $=8000$ to BFFFh , register page off
1	1	Low bank ROM $=0000$ to 3 FFFh , register page on

D2 to D0 will determine which of the lower eight pages of the cartridge ROM appear at the low bank address. The default condition will be to select page 0 .

The logical (as seen by the CPU) to physical (as appears on the upper five cartridge address lines) page translation scheme will thus be:

Low bank:	Logical page (RMR2)	Physical page
$0-7$	$0-7$	

	Logical page (DFxxh)	Physical page
High Bank:	$0-127$ (not disc page)	1
0 or 7 (disc page)	3	
	$128-255$	$0-31$

This means that any of the first eight pages of cartridge ROM can be paged in to either 0000,4000 , or 8000 h , while any of the 32 cartridge pages can simultaneously appear at C000h.

The two ROM disable bits in the existing mode and ROM enable register will disable the ROM as before, wherever it is mapped, as will the ROMDIS signal from the expansion bus.

The "write through" mechanism, whereby writes to an area which is currently mapped as ROM actually write to the underlying RAM, will still function, wherever the ROM is mapped. However, the write through mechanism cannot be used to access the register page. Write through also does not operate to the RAM from the register page.

2.9 Analogue paddle ports

The ASIC will include the logic for an octal A/D converter, in conjunction with an external R-2R network, comparator and analogue multiplexer. Eight analogue input channels are thus available on the PCB, of which only four have connectors. This allows support for four paddles or two joysticks, with capacity for twice this many without redesigning the ASIC. The A/D is 6 bits wide, to give sufficient resolution after calibrating joysticks. It will appear to the software as a bank of eight, 6 bit, read-only registers from 6808 h to 680 Fh , known as $\mathrm{ADC} 0-7$. They will be updated approximately 200 times per second. The A/D inputs have an input range of $0 \mathrm{~V}($ data $=00)$ to $2.5 \mathrm{~V}($ data $=3 \mathrm{Fh})$, and an input impedance of 1 k to ground.

2.10 PAL subcarrier locking

The main oscillator for the ASIC will be 40 MHz . A divide by 9 output at 4.444 MHz is provided with a 5:4 mark/space ratio. It will be possible to change the main crystal to $9 \times 4.33619 \mathrm{MHz}=39.902571 \mathrm{MHz}$, slowing the whole system by 0.25%. This may or may not upset the disk drives, but even if this is the case, a diskless unit could provide PAL subcarrier frequency locked to the master oscillator, thus improving the picture quality.

2.11 Locking of enhanced features

The ASIC will contain a locking mechanism, whereby the enhanced features will not be available until the software has performed an obscure sequence of I/O instructions to the ASIC. This will prevent any existing software from having nasty accidents on the new hardware.

When the lock is "locked", the secondary ROM mapping register does not exist (see Section 2.8). It is therefore impossible to select (or deselect) the memory mapped register page.

2.12 Eight bit printer support

The ASIC can provide support for eight bit printers. If a link on the PCB is made, the most significant printer port bit will be controlled by bit 3 in register 12 of the 6845 , i.e. bit 11 of the start address register. If the link is not made, the most significant printer port bit will always be low.

2.13 Floppy disc data separator

Because of timescale pressures, the data separator design in the ASIC will not be improved. Instead all models with disk drives will use an external SED9420 data seperator.

2.14 Power requirements

The Arnold V range is a 5 V only design. Power requirements are:

Amstrad 464 Plus:	MIN	MAX	UNIT
Main PCB	700	1300	mA
Cassette unit	TBD	TBD	mA
Total consumption	TBD	TBD	mA

| Amstrad 6128 Plus: | MIN | MAX | UNIT |
| :--- | :--- | :--- | :--- | :--- |
| Main PCB | 700 | 1300 | mA |
| Disk Drive Unit | TBD | 1100 | mA |
| Total consumption | TBD | 2400 | mA |

3 SOFTWARE SPECIFICATION

The computers will be shipped with a cartridge fitted in the cartridge slot, as follows. Disk based software will be supplied with the 6128 Plus by Amstrad. There will be no welcome tape or disk.

3.16128

1M ROM cartridge (i.e. 128 kx 8) Combined firmware, BASIC and Disk ROM, incorporating free game:

Page 0:	Firmware
Page 1:	BASIC
Page 2:	Game
Page 3:	Disk
Pages 4-6:	Game
Page 7:	BASIC

One $3^{\prime \prime}$ disk with CP/M Plus and utilities only.

3.2464

1M ROM cartridge as for 6128 .

4 MECHANICAL SPECIFICATION

Both models in the new CPC range will share a common plastic cabinet. This will be a two-piece design, i.e. upper and lower cabinet halves. The name Amstrad will be moulded in to the top cabinet. The different variants will be handled by breakout sections or tool inserts as necessary. The 464 version will have the model name "464 Plus" moulded into the cassette door, and the " 6128 " version will have the model name " 6128 Plus" moulded into the upper casework above the disk drive, in the area of plastic which does not exist for the 464 version. The monitors will have international symbols for brightness, contrast, volume and vertical hold. Apart from these items, there will be no moulded lettering, and moving cores must be kept to a minimum. The casework will provide both aesthetic and structural functions. Other moulded parts will be needed for the ROM cartridge, cartridge slot, cassette door, and the power switch. These should be in the same material and the same colour as the main casework mouldings.

Finish:	Off tool, textured
Colour:	TBD
Material:	TBD, non toxic.

The power switch will be connected to a "bolt" which engages in the side of the ROM cartridge when the power is on, so that the cartridge cannot be inserted or withdrawn while power is applied to the machine.

The main PCB, disk drive (6128) and cassette mechanism (464) will be mounted to the lower cabinet. Ideally, the keyboard should be similarly mounted on the lower cabinet, to improve serviceability, as should as many minor components as possible. A slimmer cassette mechanism must be used, to keep the height of the computer low. The cassette mechanism electronics will be mounted below the cassette deck, as with the old version.

5 DISPLAY DEVICES

With the CPC range, the display device, i.e. Monitor, Modulator/power supply, or peritel adaptor also supplies power to the computer. In view of the fact that RFI prevention will be important in Europe after 1992, all display devices should be to Class 1 construction, i.e. earthed, so that it is easier to prevent the computer radiating, and should themselves be designed to meet the RFI standard EN55022 (CISPR 22). The monitors should operate off both 220 V and 240 V supplies without modification.

The relevant safety standard for this product is BS415 (IEC65).

5.1 Monitors

The new CPC range will always be sold with a monitor.
The existing GTM65 and CTM640 monitors wil be restyled in the same colour as the main cabinet, except that the monitor rear cabinet material must be to BS415 Clause 20.2

The monochrome monitor should be changed to a 12" paper white tube, similar to that used on the PCW9512. The input will be the same as the earlier versions, i.e. impedance 470 ohms to 0 V , analogue voltage input which is linear between 0.8 V (Black) and 1.75 V (Peak white). However, the signal from Arnold V will not include syncronising pulses.

The input curcuit of the colour monitor will need to handle a sixteen level input on each of RGB. The new monitor must present an input impedance of 100 ohms to 0 V , and accept an analogue current of $0-10 \mathrm{~mA}$ for each gun. The levels shall be defined such that 0 mA is black and 10 mA is full on. The response must be linear between these limits.

The monitors will also incorporate stereo speakers, amplifiers, and a volume control. The 12V D.C. output will not be required.

5.2 Modulator/Power Supply units

The existing MP2 can be used with the new CPC range. However, it would be better to produce a new version following the RFI guidelines at the start of this section, and preferably including a sound modulator.

The input circuit of the Peritel adaptor will probably need to be redesigned to handle the new analogue
video signals. It should also have the sound channels added.

6 NATIONAL VARIANTS

The existing national variants of the ROM (i.e. UK, France, Spain) will continue to be supported, but no others will be added. Steps should be taken to limit the amount of national variation to that which really is necessary. There should be no need to make any changes for approvals reasons, except to power supply input voltages and mains connectors.

There will be different versions of the keyboard, instruction book, and disk, as well as the ROM cartridge. It is thus possible to change between, variants without dismantling the computer.

7 PACKING LIST

The following items should be included in the computer carton:

- Polystyrene foam packing pieces
- The Amstrad 464 Plus or 6128 Plus unit, with ROM cartridge installed.
- The instruction book

The following should be included in the monitor carton:

- Polystyrene foam packing pieces
- The MM12 or CM14 monitor

APPENDIX I

New Register Map

The new register page, from 4000h to 7FFFh appears as follows:

ADDR	SIZE	POR	TYPE	MNEM	USE
4000h	100H	N	R/W		Sprite 0 image data
4100h	100h	N	R/W		Sprite 1 image data
\|	\|	1	\|	\|	\|
4 F 00 h	100h	N	R/W		Sprite 15 image data
5000h					(unused)
6000h	2	N	R/W	X0	Sprite 0 X position
6002h	2	N	R/W	Y0	Sprite 0 Y position
6004 h	1	Y	W	M0	Sprite 0 magnification
6005 h	3				(unused)
6008h	2	N	R/W	X1	Sprite 1 X position
600Ah	2	N	R/W	Y1	Sprite 1 Y position
600 Ch	1	Y	W	M1	Sprite 1 magnification
600 Dh	3				(unused)
1	1	1	1	1	\|
6078 h	2	N	R/W	X15	Sprite 15 X position
607 Ah	2	N	R/W	Y15	Sprite 15 Y position

607 Ch	1	N	W	M15	Sprite 15 magnification
607 Dh	3				(unused)
6080h					(unused)
6400h	2	N	R/W		Colour palette, pen 0
6402h	2	N	R/W		Colour palette, pen 1
\|	\|		\|	\|	
641 Eh	2	N	R/W		Colour palette, pen 15
6420 h	2	N	R/W		Colour palette, border
6422 h	2	N	R/W		Colour palette, sprite colour 1
6424h	2	N	R/W		Colour palette, sprite colour 2
1	\|	1	1	I	
643 Eh	2	N	R/W		Colour palette, sprite colour 15
6440h					(unused)
6800h	1	Y	W	PRI	Programmable raster interrupt scan line
6801 h	1	Y	W	SPLT	Screen split scan line
6802h	2	N	W	SSA	Screen split secondary start address
6804h	1	Y	W	SSCR	Soft scroll control register
6805h	1	N	W	IVR	Interrupt Vector
6806h					(unused)
6808h	1		R	ADC0	Analogue input channel 0
6809 h	1		R	ADC1	Analogue input channel 1
680Ah	1		R	ADC2	Analogue input channel 2
680Bh	1		R	ADC3	Analogue input channel 3
680 Ch	1		R	ADC4	Analogue input channel 4
680 Dh	1		R	ADC5	Analogue input channel 5
680 Eh	1		R	ADC6	Analogue input channel 6
680Fh	1		R	ADC7	Analogue input channel 7
6810h					(unused)
6C00h	2	N	W	SAR0	"DMA" channel 0 address pointer
6C02h	1	N	W	PPR0	"DMA" channel 0 pause prescaler
6 C 03 h	1				(unused)
6C04h	2	N	W	SAR1	"DMA" channel 1 address pointer
$6 \mathrm{C06h}$	1	N	W	PPR1	"DMA" channel 1 pause prescaler
6 C 07 h	1				(unused)
6C08h	2	N	W	SAR2	"DMA" channel 2 address pointer
$6 \mathrm{C0Ah}$	1	N	W	PPR2	"DMA" channel 2 pause prescaler
$6 \mathrm{C0Bh}$	4				(unused)
6 C 0 Fh	1	Y	R/W	DCSR	"DMA" control/status register

Registers in I/O space are generally identical to earlier CPC464/6128 versions, except as follows:

7Fxxh	00xxxxxx	N	W		Palette pointer register
7Fxxh	01xxxxxx	N	W		Palette memory
7Fxxh	100xxxxx	Y	W	MRER	Mode and ROM enable register
7Fxxh	101xxxxx	Y	W	RMR2	Secondary ROM mapping register
7Fxxh	11xxxxxx	Y	W		Memory mapping register (RAM)
DFxxh	xxxxxxxx	Y	W		Expansion/Cartridge ROM select

Note that RMR2 can only be accessed when the new feature lock (Section 2.11 above) has been "opened". Otherwise, MRER exists in its place.

POR column indicates whether a register has power on reset. A " N " indicates that the contents of a register will be undefined at power on.

APPENDIX II

Connector pinouts

From front of left hand side rearwards, then along the rear panel towards the right, the connectors will be:

SOUND:	3.5 mm stereo jack
1 (Shield)	GND
2 (Tip)	L Sound
3 (Ring)	R Sound

JOYSTICK 1:	9 way male D. Joystick 2 can be daisy chained		
1	Up	6	Fire 2
2	Down	7	Fire 1
3	Left	8	Common
4	Right	9	Common (joystick 2)
5	N.C.		

JOYSTICK 2:	9 way male D.		
1	Up	6	Fire 2
2	Down	7	Fire 1
3	Left	8	Common
4	Right	9	N.C.
5	N.C.		

ANALOGUE:	15 way female D		
1	GND (Pot common)	9	GND (Pot common)
2	Fire 1	10	Fire 1
3	X1	11	X2
4	COM1 (switches)	12	COM2 (switches)
4	13	Y2	
5	+5 V	14	Fire 2
6	Y1	15	GND (Pot common)
7	Fire 2	GND (Pot common)	
8	GND		

AUX:	6 pin RJ-11 type
1	+5 V
2	Common
3	LPEN
4	Fire 2
5	Fire 1
6	GND

PRINTER:	25 way female D		
1	*Strobe	14	
2	D0	15	
3	D1	16	$+5 \mathrm{~V}$
4	D2	17	GND
5	D3	18	GND
6	D4	19	GND
7	D5	20	GND
8	D6	21	GND
9	D7	22	GND
10		23	GND
11	BUSY	24	GND
12		25	GND
13			

EXPANSION: 50 way Delta range.

1	Sound	2	GND
3	A15	4	A14

5	A13	6	A12
7	A11	8	A10
9	A9	10	A8
11	A7	12	A6
13	A5	14	A4
15	A3	16	A2
17	A1	18	A0
19	D7	20	D6
21	D5	22	D4
23	D3	24	D2
25	D1	26	D0
27	VCC	28	*MREQ
29	*M1	30	*RFSH
31	*IORQ	32	*RD
33	*WR	34	*HALT
35	*INT	36	*NMI
37	*BUSRQ	38	*BUSAK
39	READY	40	*BRST
41	*RSET	42	*ROMEN
43	ROMDIS	44	*RAMRD
45	RAMDIS	46	CURSOR
47	LPEN	48	*EXP
49	GND	50	CLK4

$5 \mathrm{~V} \mathrm{DC}:$	6 mm power
Centre	+5 V
Outer	GND

MONITOR:	8 way DIN type A (45326)
1	*Sync
2	Green
3	Lum
4	Red
5	Blue
6	L Sound
7	R Sound
8	GND

SECOND DRIVE:	36 way Delta range (6128 only)		
1	N.C. (Disk change)	2	GND
3		4	GND
5		6	GND
7	Index	8	GND
9	N.C. (Drive 0 select)	10	GND
11	Drive 1 Select	12	GND
13		14	GND
15	Motor On	16	GND
17	Direction Select	18	GND
19	Step	20	GND
21	Write Data	22	GND
23	Write Gate	24	GND
25	Track 0	26	GND
27	Write Protect	28	GND
29	Read Data	30	GND
31	Side 1 Select	32	GND
33	Ready	34	GND
35	N.C.	36	GND

The internal connectors will be:

TAPE PORT:	8 way $0.1^{\prime \prime}$ pitch connector (464 only)
1	+5 V
2	GND
3	+5 V
4	Write Data
5	Read Data
6	+5 V
7	Sound
8	*Motor on

DISK POWER:	$4 \times 0.1 "$ pitch high current PCB header (6128 only)
1	+5 V
2	GND
3	GND

INTERNAL DRIVE:	26 way 0.1"	pitch ribbon cable connector (6128 only)	
1	GND	2	Index
3	GND	4	Drive 0 Select
5	GND	6	N.C. (Drive 1 Select)
5	GND	8	Motor On
7	GND	10	Direction Select
9	GND	12	Step
11	GND	14	Write Data
13	GND	16	Write Gate
15	GND	18	Track 0
17	GND	20	Write Protect
19	GND	22	Read Data
21	GND	24	Side 1 Select
23	GND	26	Ready
25			

KEYBOARD:	2 pcs 10 way $0.1^{\prime \prime}$ pitch socket for flexible PCB		
1	N.C.	1	Y1
2	X1	2	Y2
3	X 2	3	Y3
4	X 3	4	Y4
5	X 4	5	Y5
6	X 5	6	Y6
7	X 6	7	Y 7
8	X 7	8	Y8
9	X8	9	Y9
10	N.C.	10	Y10

POWER SWITCH:	2 pin 0.1 " pitch header
1	Input from PSU
2	+5 V to Computer

POWER ON LED:	2 pin $0.1 "$ pitch header
1	LED Anode
2	GND

ROM CARTRIDGE: 2 pcs 2×9 way 2.5 mm pitch sockets.

1a	A10	2a	A2	1b	$+5 \mathrm{~V}$	2b	$+5 \mathrm{~V}$
3a	* CE	4a	A1	3b	CLK	4b	CA18
5a	D7	6a	A0	5b	CA16	6b	CA17
7 a	D6	8 a	D0	7b	CA15	8b	CA14
9 a	D5	10a	D1	9b	A12	10 b	A13
11a	D4	12a	D2	11b	A7	12b	A8
13a	D3	14a	SIN	13b	A9	14b	A9
15a	CCLR	16 a	GND	15b	A5	16 b	A11
17a	GND	18a	GND	17b	A4	18 b	A3

This document was originally transcribed by Rob Scott and Paul Fairman. It was converted into HTML by Kevin Thacker.

