
DIGITAL

RESEARCH TM

CP/M

Operating System

Manual

CP/M Features and Facilities
 The CP/M Editor

COPYRIGHT

Copyright C 1976, 1977, 1978, 1979, 1982, and 1983 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579, Pacific Grove, California 93950.

This manual is, however, tutorial in nature. Thus, the reader is granted permission to include the
example programs, either in whole or in part, in his own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents hereof and
specifically disclaims any implied warranties of merchantability or fitness for any particular
purpose. Further, Digital Research reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of Digital Research to notify
any person of such revision or changes.

TRADEMARKS

CP/M and CP/NET are registered trademarks of Digital Research. ASM, DESPOOL, DDT,
LINK-80, MAC, MP/M, PL/1-80 and SID are trademarks of Digital Research. Intel is a
registered trademark of Intel Corporation. TI Silent 700 is a trademark of Texas Instruments
Incorporated. Zilog and Z80 are registered trademarks of Zilog, Inc.

The CP/M Operating System Manual was printed in the United States of America.

First Edition: 1976
Second Edition: July 1982

Third Edition: September 1983

Table of Contents

1 CP/M Features and Facilities

1.1 Introduction 1-1
1.2 Functional . . Description . 1-3

1.2.1 General Command Structure 1-3
1.2.2 File References . 1-4

1.3 Switching . Disks . 1-7
1.4 Built-in . . . Commands . 1-7

1.4.1 ERA . 1-8
1.4.2 DIR . 1-9
1.4.3 REN . 1-10
1.4.4 SAVE . 1-11
1.4.5 TYPE . 1-11
1.4.6 USER . 1-12

1.5 Line Editing and Output Control
1-12

1.6 Transient Commands
1-14

1.6.1 STAT . I -15
1.6.2 ASM . 1-22
1.6.3 LOAD . 1-24
1.6.4 PIP . 1-25
1.6.5 ED . 1-35
1.6.6 SYSGEN . 1-37
1.6.7 SUBMIT . 1-39
1.6.8 DUMP . 1-41
1.6.9 MOVCPM . 1-42

1.7 BDOS Error Messages . 1-44
1.8 Operation of CP/M on the MDS . 1-46

2 ED

2.1 Introduction to ED . 2-1
2.1.1 ED Operation . 2-1
2.1.2 Text Transfer Functions . 2-3
2.1.3 Mei-norv Buffer Organization 2-4
2.1.4 Line numbers and ED Start Up 2-5
2.1.5 Metnorv Buffer Operation . 2-7
2.1.6 Command Strings . 2-8

Table of Contents (continued)

2.1.7 Text Search and Alteration 2-11
2.1.8 Source Libraries 2-15
2.1.9 Repetitive Command Execution 2-17

2.2 ED Error Conditions . 2-18
 2.3 Control Characters and Commands 2-19

3 CP/M Assembler

3.1 Introduction . 3-1
3.2 Program Format . 3-3
3.3 Forming the Operand . 3-4

3.3.1 Labels . 3-5
3.3.2 Numeric Constants . 3-5
3.3.3 Reserved Words . 3-6
3.3.4 String Constants . 3-7
3.3.5 Arithmetic and Logical Operators 3-7
3.3.6 Precedence of Operators . 3-9

3.4 Assembler Directives . 3-10
3.4.1 The ORG Directive . 3-11
3.4.2 The END Directive . 3-11
3.4.3 The EQU Directive . 3-12
3.4.4 The SET Directive . 3-13
3.4.5 The IF and ENDIF Directive 3-13
3.4.6 The DB Directive . 3-15
3.4.7 The DW Directive . 3-15
3.4.8 The DS Directive . 3-16

3.5 Operation Codes . 3-16
3.5.1 Jumps, Calls, and Returns 3-17
3.5.2 Immediate Operand Instructions 3-19
3.5.3 Increment and Decrement Instructions 3-20
3.5.4 Data Movement Instructions 3-21
3.5.5 Arithmetic Logic Unit Operations 3-22
3.5.6 Control Instuctions . 3-24

3.6 Error Messages . 3-24
3.7 A Sample Session . 3-26

Table of Contents (continued)

4 CP/M Dynamic Debugging Tool

4.1 Introduction 4-1
4.2 DDT Commands 4-4

4.2.1 The A (Assembly) Command 4-4
4.2.2 The D (Display) Command 4-5
4.2.3 The F (Fill) Command . 4-5
4.2.4 The G (Go) Command . 4-6
4.2.5 The I (Input) Command . 4-7
4.2.6 The L (List) Command . 4-7
4.2.7 The M (Move) Command . 4-8
4.2.8 The R (Read) Command . 4-8
4.2.9 The S (Set) Command . 4-9
4.2.10 The T (Trace) Command . 4-9
4.2.11 The U (Untrace) Command 4-10
4.2.12 The X (Examine) Command 4-10

4.3 Implementation Notes 4-11
4.4 A Sample Program 4-12

· CP/M 2 System Interface

5.1 Introduction . 5-1
5.2 Operating Svstem Call Conventions 5-4
5.3 A Sample Flie-to-File Copy Program 5-36
5.4 A Sample File Dump Utility . 5-40
5.5 A Sample Random Access Program 5-46
5.6 System Function Summary . 5-54

6 CP/M Alteration

6.1 Introduction . 6-1
6.2 First-level System Regeneration . 6-3
6.3 Second-level System Generation . 6-6
6.4 Sample GETSYS and PUTSYS Program 6-11
6.5 Disk Organization . 6-13
6.6 The BIOS Entry Points . 6-15
6.7 A Sample BIOS . 6-25
6.8 A Sample Cold Start Loader . 6-25

Table of Contents (continued)

6.9 Reserved Locations in Page Zero . 6-26
6.10 Disk Parameter Tables . 6-28
6.11 The DISKDEF Macro Library . 6-34
6.12 Sector Blocking and Deblocking . 6-39

Appendixes

A The MDS Basic 1/0 System (BIOS) . A-1
B A Skeletal CBIOS . B-1
C A Skeletal GETSYS/PUTSYS Program . C-1
D The MDS-800 Cold Start Loader for CP/M 2 D-1
E A Skeletal Cold Start Loader . E-1
F CP/M Disk Definition Library . F-I
G Blocking and Deblocking Algorithms . G-1
H Glossary . H-1
I CP/M Messages . 1-1

Tables

1-1 Line-editing Control Characters . 1-12
1-2 CP/M Transient Commands . 1-14
1-3 Physical Devices . 1-17
1-4 PIP Parameters . 1-31
2-1 ED Text Transfer Commands . 2-3
2-2 Editing Commands . 2-8
2-3 Line-editing Controls . 2-9
2-4 Error Message Symbols . 2-18
2-5 ED Control Characters . 2-19
2-6 ED Commands . 2-20
3-1 Reserved Characters . 3-6
3-2 Arithmetic and Logical Operations . 3-7
3-3 Assembler Directives . 3-10
3-4 Jumps, Calls, and Returns . 3-17
3-5 Immediate Operand Instructions . 3-19
3-6 Increment and Decrement Instructions . 3-20

Table of Contents (continued)

3-7 Data Movement Instructions . 3-21
1-1 Arithmetic Logic Unit Operations . 3-22
3-9 Error Codes . 3-24
3-10 Error Messages . 3-25
4-1 Line-editing Controls . 4-2
4-2 DDT Comniatids . 4-2
4-3 CPU Registers . 4-11
5-1 CP/M Filetypes . 5-7
5-2 File Control Block Fields . 5-9
5 -3 Edit Control Characters . 5-16
6-1 Standard Memory Size Values . 6-3
6-2 Common Values for CP/M Svstei-ns . 6-8
6-3 CP/M Disk Sector Allocation . 6-14
6-4 IOBYTE Field Values . 6-18
6-5 BIOS Entry Points . 6-20
6-6 Reserved Locations in Page Zero . 6-26
6-7 Disk Parameter Headers . 6-28
6-8 BSH and BLM Values . 6-31
6-9 EXM Values . 6-32
6-10 BLS Tabulation . 6-33

Figures

2-1 Overall ED Operation . 2-2
2-2 Memorv Buffer Organization . 2-3
2-3 Logical Organization of Memory Buffer . 2-5
5-1 CP/M Memory Organization . 5-2
5-2 File Control Block Format . 5-8
6-1 IOBYTE Fields . 6-18
6-2 Disk Parameter Header Format . 6-28
6-3 Disk Parameter Header Table . 6-29
6-4 Disk Parameter Block Format . 6-30
6-5 ALO and ALI . 6-32

Section 1
CP/M Features and Facilities

1.1 Introduction

CP/M is a monitor control program for microcomputer system development that uses floppy
disks or Winchester hard disks for backup storage. Using a computer system based on the Intel
8080 microcomputer, CP/M provides an environment for program construction, storage, and
editing, along with assembly and program checkout facilities. CP/M can be easily altered to
execute with any computer configuration that uses a Zilog Z80 or an Intel 8080 Central
Processing Unit (CPU) and has at least 20K bytes of main memory with up to 16 disk drives. A
detailed discussion of the modifications required for any particular hardware environment is
given in Section 6. Although the standard Digital Research version operates on a single-density
Intel MDS 800, several different hardware manufacturers support their own input-output (I/O)
drivers for CP/M.

The CP/M monitor provides rapid access to programs through a comprehensive file management
package. The file subsystem supports a named file structure, allowing dynamic allocation of file
space as well as sequential and random file access. Using this file system, a large number of
programs can be stored in both source and machine executable form.

CP/M 2 is a high-performance, single console operating system that uses table-driven techniques
to allow field reconfiguration to match a wide variety of disk capacities. All fundamental file
restrictions are removed, maintaining upward compatibility from previous versions of release 1.

Features of CP/M 2 include field specification of one to sixteen logical drives, each containing
up to eight megabytes. Any particular file can reach the full drive size with the capability of
expanding to thirty-two megabytes in future releases. The directory size can be field-configured
to contain any reasonable number of entries, and each file is optionally tagged with Read-Only
and system attributes. Users of CP/M 2 are physically separated by user numbers, with facilities
for file copy operations from one user area to another. Powerful relative-record random access
functions are present in CP/M 2 that provide direct access to any of the 65536 records of an
eight-megabyte file.

1-1

CP/M also supports ED, a powerful context editor, ASM, an Intel-compatible assembler, and
DDT, debugger subsystems. Optional software includes a powerful Intel-compatible macro
assembler, symbolic debugger, along with various high-level languages. When coupled with
CP/M's Console Command Processor (CCP), the resulting facilities equal or exceed similar large
computer facilities.

CP/M is logically divided into several distinct parts:

 -BIOS (Basic I/O System), hardware-dependent
 -BDOS (Basic Disk Operating System)
 -CCP (Console Command Processor)
 -TPA (Transient Program Area)

The BIOS provides the primitive operations necessary to access the disk drives and to interface
standard peripherals: teletype, CRT, paper tape reader/punch, and user-defined peripherals. You
can tailor peripherals for any particular hardware environment by patching this portion of CP/M.
The BDOS provides disk management by controlling one or more disk drives containing
independent file directories. The BDOS implements disk allocation strategies that provide fully
dynamic file construction while minimizing head movement across the disk during access. The
BDOS has entry points that include the following primitive operations, which the program
accesses:

 -SEARCH looks for a particular disk file by name.
 -OPEN opens a file for further operations.
 -CLOSE closes a file after processing.
 -RENAME changes the name of a particular file.
 -READ reads a record from a particular file.
 -WRITE writes a record to a particular file.
 -SELECT selects a particular disk drive for further operations.

The CCP provides a symbolic interface between your console and the remainder of the CP/M
system. The CCP reads the console device and processes commands, which include listing the
file directory, printing the contents of files, and controlling the operation of transient programs,
such as assemblers, editors, and debuggers. The standard commands that are available in the CCP
are listed in Section 1.2.1.

The last segment of CP/M is the area called the Transient Program Area (TPA). The TPA holds
programs that are loaded from the disk under command of the CCP. During program editing, for
example, the TPA holds the CP/M text editor machine code and data areas. Similarly, programs
created under CP/M can be checked out by loading and executing these programs in the TPA.

1-2

Any or all of the CP/M component subsystems can be overlaid by an executing program. That is,
once a user's program is loaded into the TPA, the CCP, BDOS, and BIOS areas can be used as
the program's data area. A bootstrap loader is programmatically accessible whenever the BIOS
portion is not overlaid; thus, the user program need only branch to the bootstrap loader at the end
of execution and the complete CP/M monitor is reloaded from disk.

The CP/M operating system is partitioned into distinct modules, including the BIOS portion that
defines the hardware environment in which CP/M is executing. Thus, the standard system is
easily modified to any nonstandard environment by changing the peripheral drivers to handle the
custom system.

1.2 Functional Description

You interact with CP/M primarily through the CCP, which reads and interprets commands
entered through the console. In general, the CCP addresses one of several disks that are on-line.
The standard system addresses up to sixteen different disk drives. These disk drives are labeled
A through P. A disk is logged-in if the CCP is currently addressing the disk. To clearly indicate
which disk is the currently logged disk, the CCP always prompts the operator with the disk name
followed by the symbol >, indicating that the CCP is ready for another command. Upon initial
start-up, the CP/M system is loaded from disk A, and the CCP displays the following message:

CP/M VER x.x

where x.x is the CP/M version number. All CP/M systems are initially set to operate in a 20K
memory space, but can be easily reconfigured to fit any memory size on the host system (see
Section 1.6.9). Following system sign-on, CP/M automatically logs in disk A, prompts you with
the symbol A>, indicating that CP/M is currently addressing disk A, and waits for a command.
The commands are implemented at two levels: built-in commands and transient commands.

1.2.1 General Command Structure

Built-in commands are a part of the CCP program, while transient commands are loaded into the
TPA from disk and executed. The following are built-in commands:

 -ERA erases specified files.
 -DIR lists filenames in the directory.
 -REN renames the specified file.
 -SAVE saves memory contents in a file.
 -TYPE types the contents of a file on the logged disk.

1.1 Introduction CP/M Operating System Manual

1-3

Most of the commands reference a particular file or group of files. The form of a file reference is
specified in Section 1.2.2.

1.2.2 File References

A file reference identifies a particular file or group of files on a particular disk attached to CP/M.
These file references are either unambiguous (ufn) or ambiguous (afn). An unambiguous file
reference uniquely identifies a single file, while an ambiguous file reference is satisfied by a
number of different files.

File references consist of two parts: the primary filename and the filetype. Although the filetype
is optional, it usually is generic. For example, the filetype ASM is used to denote that the file is
an assembly language source file, while the primary filename distinguishes each particular source
file. The two names are separated by a period, as shown in the following example:

filename.typ

In this example, filename is the primary filename of eight characters or less, and typ is the
filetype of no more than three characters. As mentioned above, the name

filename

is also allowed and is equivalent to a filetype consisting of three blanks. The characters used in
specifying an unambiguous file reference cannot contain any of the following special characters:

< > . , ; : = ? * [] % | () / \

while all alphanumerics and remaining special characters are allowed.

An ambiguous file reference is used for directory search and pattern matching. The form of an
ambiguous file reference is similar to an unambiguous reference, except the symbol ? can be
interspersed throughout the primary and secondary names. In various commands throughout
CP/M, the ? symbol matches any character of a filename in the ? position. Thus, the ambiguous
reference

X?Z.C?M

1.1 Introduction CP/M Operating System Manual

1-4

matches the following unambiguous filenames

XYZ.COM

and

X3Z.CAM

The wildcard character can also be used in an ambiguous file reference. The * character replaces
all or part of a filename or filetype. Note that

.

equals the ambiguous file reference

????????.???

while

filename.*

and

*.typ

are abbreviations for

filename.???

and

????????.typ

respectively. As an example,

A>DIR *,*

is interpreted by the CCP as a command to list the names of all disk files in the directory. The
following example searches only for a file by the name X.Y:

A>DIR X.Y

1.2 Functional Description CP/M Operating System Manual

1-5

Similarly, the command

A>DIR X?Y.C?M

causes a search for all unambiguous filenames on the disk that satisfy this ambiguous reference.

The following file references are valid unambiguous file references:

X
X.Y
XYZ
XYZ.COM
GAMMA
GAMMA.1

As an added convenience, the programmer can generally specify the disk drive name along with
the filename. In this case, the drive name is given as a letter A through P followed by a colon (:).
The specified drive is then logged-in before the file operation occurs. Thus, the following are
valid file references with disk name prefixes:

A:X.Y
P:XYZ.COM
B:XYZ
B:X.A?M
C:GAMMA
C:*.ASM

All alphabetic lower-case letters in file and drive names are translated to upper-case when they
are processed by the CCP.

1.2 Functional Description CP/M Operating System Manual

1-6

1.3 Switching Disks

The operator can switch the currently logged disk by typing the disk drive name, A through P,
followed by a colon when the CCP is waiting for console input. The following sequence of
prompts and commands can occur after the CP/M system is loaded from disk
A:

CP/M VER 2.2
A>DIR List all files on disk A.
A:SAMPLE ASM SAMPLE PRN
A>B: Switch to disk B.
B>DIR *.ASM List all ASM files on B.
B:DUMP ASM FILES ASM
B>A: Switch back to A.

1.4 Built-in Commands

The file and device reference forms described can now be used to fully specify the structure of
the built-in commands. Assume the following abbreviations in the description below:

ufn unambiguous file reference
afn ambiguous file reference

Recall that the CCP always translates lower-case characters to upper-case characters internally.
Thus, lower-case alphabetics are treated as if they are upper-case in command names and file
references.

1.2 Functional Description CP/M Operating System Manual

1-7

1.4.1 ERA Command

Syntax:

ERA afn

The ERA (erase) command removes files from the currently logged-in disk, for example, the disk
name currently prompted by CP/M preceding the >. The files that are erased are those that satisfy
 the ambiguous file reference afn. The following examples illustrate the use of ERA:

ERA X.Y The file named X.Y on the currently logged disk is removed from the disk
directory and the space is returned.

ERA X.* All files with primary name X are removed from the current disk.

ERA *.ASM All files with secondary name ASM are removed from the current disk.

ERA X?Y.C?M All files on the current disk that satisfy the ambiguous reference X?Y.C?M
are deleted.

ERA *.* Erase all files on the current disk. In this case, the CCP prompts the
console with the message

ALL FILES (Y/N)?

which requires a Y response before files are actually removed.

ERA B:*.PRN All files on drive B that satisfy the ambiguous reference ????????.PRN are
deleted, independently of the currently logged disk.

1.3 Switching Disks CP/M Operating System Manual

1-8

1.4.2 DIR Command

Syntax:

DIR afn

The DIR (directory) command causes the names of all files that satisfy the ambiguous filename
afn to be listed at the console device. As a special case, the command

DIR

lists the files on the currently logged disk (the command DIR is equivalent to the command DIR
.). The following are valid DIR commands:

DIR X.Y
DIR X?Y.C?M
DIR ??.Y

Similar to other CCP commands, the afn can be preceded by a drive name. The following DIR
commands cause the selected drive to be addressed before the directory search takes place:

DIR B:
DIR B:X.Y
DIR B:*.A?M

If no files on the selected disk satisfy the directory request, the message NO FILE appears at the
console.

1.4 Built-in Commands CP/M Operating System Manual

1-9

1.4.3 REN Command

Syntax:

REN ufn1=ufn2

The REN (rename) command allows you to change the names of files on disk. The file satisfying
ufn2 is changed to ufn1. The currently logged disk is assumed to contain the file to rename
(ufn2). You can also type a left-directed arrow instead of the equal sign if the console supports
this graphic character. The following are examples of the REN command:

REN X.Y=Q.R The file Q.R is changed to X.Y.

REN XYZ.COM=XYZ.XXX The file XYZ.COM is changed to XYZ.XXX.

The operator precedes either ufn1 or ufn2 (or both) by an optional drive address. If ufn1 is
preceded by a drive name, then ufn2 is assumed to exist on the same drive. Similarly, if ufn2 is
preceded by a drive name, then ufn1 is assumed to exist on the drive as well. The same drive
must be specified in both cases if both ufn1 and ufn2 are preceded by drive names. The following
REN commands illustrate this format:

REN A:X.ASM=Y.ASM The file Y.ASM is changed to X.ASM on drive A.

REN B:ZAP.BAS=ZOT.BAS The file ZOT.BAS is changed to ZAP.BAS on drive B.

REN B:A.ASM=B:A.BAK The file A.BAK is renamed to A.ASM on drive B.

If ufn1 is already present, the REN command responds with the error FILE EXISTS and not
perform the change. If ufn2 does not exist on the specified disk, the message NO FILE is printed
at the console.

1.4 Built-in Commands CP/M Operating System Manual

1-10

1.4.4 SAVE Command

Syntax:

SAVE n ufn

The SAVE command places n pages (256-byte blocks) onto disk from the TPA and names this
file ufn. In the CP/M distribution system, the TPA starts at 100H (hexadecimal) which is the
second page of memory. The SAVE command must specify 2 pages of memory if the user's
program occupies the area from 100H through 2FFH. The machine code file can be subsequently
loaded and executed. The following are examples of the SAVE command:

SAVE 3 X.COM Copies 100H through 3FFH to X.COM.

SAVE 40 Q Copies 100H through 28FFH to Q. Note that 28 is the page
count in 28FFH, and that 28H = 2 * 16 + 8 = 40 decimal.

SAVE 4 X.Y Copies 100H through 4FFH to X.Y.

The SAVE command can also specify a disk drive in the ufn portion of the command, as shown
in the following example:

SAVE 10 B:ZOT.COM Copies 10 pages, 100H through 0AFFH, to the file
ZOT.COM on drive B.

1.4.5 TYPE Command

Syntax:

TYPE ufn

The TYPE command displays the content of the ASCII source file ufn on the currently logged
disk at the console device. The following are valid TYPE commands:

TYPE X.Y
TYPE X.PLM
TYPE XXX

1.4 Built-in Commands CP/M Operating System Manual

1-11

The TYPE command expands tabs, CTRL-I characters, assuming tab positions are set at every
eighth column. The ufn can also reference a drive name.

TYPE B:X.PRNThe file X.PRN from drive B is displayed.

1.4.6 USER Command

Syntax:

USER n

The USER command allows maintenance of separate files in the same directory. In the syntax
line, n is an Integer value in the range 0 to 15. On cold start, the operator is automatically logged
into user area number 0, which is compatible with standard CP/M 1 directories. You can issue
the USER command at any time to move to another logical area within the same directory.
Drives that are logged-in while addressing one user number are automatically active when the
operator moves to another. A user number is simply a prefix that accesses particular directory
entries on the active disks.

The active user number is maintained until changed by a subsequent USER command, or until a
cold start when user 0 is again assumed.

1.5 Line Editing and Output Control

The CCP allows certain line-editing functions while typing command lines. The CTRL-key
sequences are obtained by pressing the control and letter keys simultaneously. Further, CCP
command lines are generally up to 255 characters in length; they are not acted upon until the
carriage return key is pressed.

 Table 1-1. Line-editing Control Characters

 Character Meaning

 CTRL-C Reboots CP/M system when pressed at start of line.

 CTRL-E Physical end of line; carriage is returned, but line is not sent

until the carriage return key is pressed.

 CTRL-H Backspaces one character position.

1.4 Built-in Commands CP/M Operating System Manual

1-12

 CTRL-I Terminates current input (line-feed).

 CTRL-M Terminates current input (carriage return).

 CTRL-P Copies all subsequent console output to the currently assigned list device
(see Section 1.6.1). Output is sent to the list device and the console device
until the next CTRL-P is pressed.

 CTRL-R Retypes current command line; types a clean line following character
deletion with rubouts.

 CTRL-S Stops the console output temporarily. Program execution and output
continue when you press any character at the console, for example another
CTRL-S. This feature stops output on high speed consoles, such as CRTs,
in order to view a segment of output before continuing.

 CTRL-U Deletes the entire line typed at the console.

 CTRL-X Same as CTRL-U.

 CTRL-Z Ends input from the console (used in PIP and ED).

 rub/del Deletes and echoes the last character typed at the console.

1.4 Built-in Commands CP/M Operating System Manual

1-13

1.6 Transient Commands

Transient commands are loaded from the currently logged disk and executed in the TPA. The
transient commands for execution under the CCP are below. Additional functions are easily
defined by the user (see Section 1.6.3).

 Table 1-2. CP/M Transient Commands

 Command Function

 STAT Lists the number of bytes of storage remaining on the currently logged disk,
provides statistical information about particular files, and displays or alters device
assignment.

 ASM Loads the CP/M assembler and assembles the specified program from disk.

 LOAD Loads the file in Intel HEX machine code format and produces a file in machine
executable form which can be loaded into the TPA. This loaded program becomes

a new command under the CCP.

 DDT Loads the CP/M debugger into TPA and starts execution.

 PIP Loads the Peripheral Interchange Program for subsequent disk file and peripheral
transfer operations.

 ED Loads and executes the CP/M text editor program.

 SYSGEN Creates a new CP/M system disk.

 SUBMIT Submits a file of commands for batch processing.

 DUMP Dumps the contents of a file in hex.

 MOVCPM Regenerates the CP/M system for a particular memory size.

1.5 Line Editing and Output Control CP/M Operating System Manual

1-14

Transient commands are specified in the same manner as built-in commands, and additional
commands are easily defined by the user. For convenience, the transient command can be
preceded by a drive name which causes the transient to be loaded from the specified drive into
the TPA for execution. Thus, the command

B:STAT

causes CP/M to temporarily log in drive B for the source of the STAT transient, and then return
to the original logged disk for subsequent processing.

1.6.1 STAT Command

Syntax:

STAT
STAT "command line"

The STAT command provides general statistical information about file storage and device
assignment. Special forms of the command line allow the current device assignment to be
examined and altered. The various command lines that can be specified are shown with an
explanation of each form to the right.

 STAT If you type an empty command line, the STAT transient calculates the storage
remaining on all active drives, and prints one of the following messages:

d: R/W, SPACE: nnnK

d: R/O, SPACE: nnnK

for each active drive d:, where R/W indicates the drive can be read or written, and
R/O indicates the drive is Read-Only (a drive becomes R/O by explicitly setting it
to Read-Only, as shown below, or by inadvertently changing disks without

performing a warm start). The space remaining on the disk in drive d: is
given in kilobytes by nnn.

 STAT d: If a drive name is given, then the drive is selected before the storage is computed.
Thus, the command STAT B: could be issued while logged into drive A, resulting

in the message

BYTES REMAINING ON B: nnnK

1.6 Transient Commands CP/M Operating System Manual

1-15

 STAT afn The command line can also specify a set of files to be scanned by STAT. The files
that satisfy afn are listed in alphabetical order, with storage requirements

for each file under the heading:

RECS BYTES EXT D:FILENAME.TYP
rrrr bbbk ee d:filename.typ

where rrrr is the number of 128-byte records allocated to the file, bbb is the
number of kilobytes allocated to the file (bbb=rrrr*128/1024), ee is the number of
16K extensions (ee=bbb/16), d is the drive name containing the file (A ... P),
filename is the eight-character primary filename, and typ is the three-character
filetype. After listing the individual files, the storage usage is summarized.

 STAT d:afn The drive name can be given ahead of the afn. The specified drive is first
selected, and the form STAT afn is executed.

 STAT d:=R/O This form sets the drive given by d to Read-Only, remaining in effect until
the next warm or cold start takes place. When a disk is Read-Only, the message

BDOS ERR ON d: Read-Only

appears if there is an attempt to write to the Read-Only disk. CP/M waits until a
key is pressed before performing an automatic warm start, at which time the disk
becomes R/W.

The STAT command allows you to control the physical-to-logical device assignment. See the
IOBYTE function described in Sections 5 and 6. There are four logical peripheral devices that
are, at any particular instant, each assigned one of several physical peripheral devices. The
following is a list of the four logical devices:

- CON: is the system console device, used by CCP for communication with the
operator.

- RDR: is the paper tape reader device.

- PUN: is the paper tape punch device.

- LST: is the output list device.

1.6 Transient Commands CP/M Operating System Manual

1-16

The actual devices attached to any particular computer system are driven by subroutines in the
BIOS portion of CP/M. Thus, the logical RDR: device, for example, could actually be a high
speed reader, teletype reader, or cassette tape. To allow some flexibility in device naming and
assignment, several physical devices are defined in Table 1-3.

 Table 1-3. Physical Devices

 Device Meaning

 TTY: Teletype device (slow speed console)

 CRT: Cathode ray tube device (high speed console)

 BAT: Batch processing (console is current RDR:, output goes to current LST: device)

 UC1: User-defined console

 PTR: Paper tape reader (high speed reader)

 UR1: User-defined reader #1

 UR2: User-defined reader #2

 PTP: Paper tape punch (high speed punch)

 UP1: User-defined punch #1

 UP2: User-defined punch #2

 LPT: Line printer

 UL1: User-defined list device #1

1.6 Transient Commands CP/M Operating System Manual

1-17

It is emphasized that the physical device names might not actually correspond to devices that the
names imply. That is, you can implement the PTP: device as a cassette write operation. The exact
correspondence and driving subroutine is defined in the BIOS portion of CP/M. In the standard
distribution version of CP/M, these devices correspond to their names on the MDS 800
development system.

The command,

STAT VAL:

produces a summary of the available status commands, resulting in the output:

Temp R/O Disk d:$R/O
Set Indicator: filename.typ $R/O $R/W $SYS $DIR
Disk Status: DSK: d:DSK
Iobyte Assign:

which gives an instant summary of the possible STAT commands and shows the permissible
logical-to-physical device assignments:

CON:=TTY:CRT:BAT:UCI:
RDR:=TTY:PTR:URI:UR2:
PUN:=TTY:PTP:UP1:UP2:
LST:=TTY:CRT:LPT:ULI:

The logical device to the left takes any of the four physical assignments shown to the right. The
current logical-to-physical mapping is displayed by typing the command:

STAT DEV:

This command produces a list of each logical device to the left and the current corresponding
physical device to the right. For example, the list might appear as follows:

CON:=CRT:
RDR:=URl:
PUN:=PTP:
LST:=TTY:

1.6 Transient Commands CP/M Operating System Manual

1-18

The current logical-to-physical device assignment is changed by typing a STAT command of the
form:

STAT ld1=pd1,ld2=pd2,...,ldn=pdn

where ld1 through ldn are logical device names and pd1 through pdn are compatible physical
device names. For example, ld1 and pd1 appear on the same line in the VAL: command shown
above. The following example shows valid STAT commands that change the current
logical-to-physical device assignments:

STAT CON:=CRT:
STAT PUN:=TTY:,LST:=LPT:,RDR:=TTY

The command form,

STAT d:filename.typ $S

where d: is an optional drive name and filename.typ is an unambiguous or ambiguous filename,
produces the following output display format:

 Size Recs Bytes Ext Acc

 48 48 6K 1 R/O A:ED.COM
 55 55 12K I R/O (A:PIP.COM)
 65536 128 16K 2 R/W A:X.DAT

where the $S parameter causes the Size field to be displayed. Without the $S, the Size field is
skipped, but the remaining fields are displayed. The Size field lists the virtual file size in records,
while the Recs field sums the number of virtual records in each extent. For files constructed
sequentially, the Size and Recs fields are identical. The Bytes field lists the actual number of
bytes allocated to the corresponding file. The minimum allocation unit is determined at
configuration time; thus, the number of bytes corresponds to the record count plus the remaining
unused space in the last allocated block for sequential files. Random access files are given data
areas only when written, so the Bytes field contains the only accurate allocation figure. In the
case of random access, the Size field gives the logical end-of-file record position and the Recs
field counts the logical records of each extent. Each of these extents, however, can contain
unallocated holes even though they are added into the record count.

1.6 Transient Commands CP/M Operating System Manual

1-19

The Ext field counts the number of physical extents allocated to the file. The Ext count
corresponds to the number of directory entries given to the file. Depending on allocation size,
there can be up to 128K bytes (8 logical extents) directly addressed by a single directory entry. In
a special case, there are actually 256K bytes that can be directly addressed by a physical extent.

The Acc field gives the R/O or R/W file indicator, which you can change using the commands
shown. The four command forms,

STAT d:filename.typ $R/O
STAT d:filename.typ $R/W
STAT d:filename.typ $SYS
STAT d:filename.typ $DIR

set or reset various permanent file indicators. The R/O indicator places the file, or set of files, in
a Read-Only status until changed by a subsequent STAT command. The R/O status is recorded in
the directory with the file so that it remains R/O through intervening cold start operations. The
R/W indicator places the file in a permanent Read-Write status. The SYS indicator attaches the
system indicator to the file, while the DIR command removes the system indicator. The
filename.typ may be ambiguous or unambiguous, but files whose attributes are changed are listed
at the console when the change occurs. The drive name denoted by d: is optional.

1.6 Transient Commands CP/M Operating System Manual

1-20

When a file is marked R/O, subsequent attempts to erase or
write into the file produce the following BDOS message at your
screen:

BDOS Err on d: File R/O

lists the drive characteristics of the disk named by d: that is in the range A:, B:,...,P:. The drive
characteristics are listed in the following format:

 d: Drive Characteristics
 65536: 128 Byte Record Capacity
 8192: Kilobyte Drive Capacity
 128: 32 Byte Directory Eritries
 0: Checked Directory Eritries
 1024: Records/Extent
 128: Records/BlocK
 58: Sectors/TracK
 2: Reserved TracKs

where d: is the selected drive, followed by the total record capacity (65536 is an eight-megabyte
drive), followed by the total capacity listed in kilobytes. The directory size is listed next,
followed by the checked entries. The number of checked entries is usualiv identical to the
directory size for removable media, because this mechanism is used to detect changed media
during CP/M operation without an intervening warm start. For fixed media, the number is usually
zero, because the media are not changed without at least a cold or warm start.

The number of records per extent determines the addressing capacity of each directory entry
(1024 times 128 bytes, or 128K in the previous example). The number of records per block
shows the basic allocation size (in the example, 128 records/block times 128 bytes per record, or
16K bytes per block). The listing is then followed by the number of physical sectors per track and
the number of reserved tracks.

1.6 Transient Commands CP/M Operating System Manual

1-21

For logical drives that share the same physical disk, the number of reserved tracks can be quite
large because this mechanism is used to skip lower-numbered disk areas allocated to other
logical disks. The command form

STAT DSK:

produces a drive characteristics table for all currently active drives. The final STAT command
form is

STAT USR:

which produces a list of the user numbers that have files on the currently addressed disk. The
display format is

Active User: 0
Active Fi1es: 0 1 3

where the first line lists the currently addressed user number, as set by the last CCP USER
command, followed by a list of user numbers scanned from the current directory. In this case, the
active user number is 0 (default at cold start) with three user numbers that have active files on the
current disk. The operator can subsequently examine the directories of the other user numbers by
logging in with USER 1 or USER 3 commands, followed by a DIR command at the CCP level.

1.6.2 ASM Command

Syntax:

ASM ufn

The ASM command loads and executes the CP/M 8080 assembler. The ufn specifies a source file
containing assembly language statements, where the filetype is assumed to be ASM and is not
specified. The following ASM commands are valid:

ASM
ASM GAMMA

The two-pass assembler is automatically executed. Assembly errors that occur during the second
pass are printed at the console.

1.6 Transient Commands CP/M Operating System Manual

1-22

 The assembler produces a file:

X.PRN

where X is the primary name specified in the ASM command. The PRN file contains a listing of
the source program with embedded tab characters if present in the source program, along with the
machine code generated for each statement and diagnostic error messages, if any. The PRN file is
listed at the console using the TYPE command, or sent to a peripheral device using PIP (see
Section 1.6.4). Note that the PRN file contains the original source program, augmented by
miscellaneous assembly information in the leftmost 16 columns; for example, program addresses
and hexadecimal machine code. The PRN file serves as a backup for the original source file. If
the source file is accidentally removed or destroyed, the PRN file can be edited by removing the
leftmost 16 characters of each line (see Section 2). This is done by issuing a single editor macro
command. The resulting file is identical to the original source file and can be renamed from PRN
to ASM for subsequent editing and assembly. The file

A.HEX

is also produced, which contains 8080 machine language in Intel HEX format suitable for
subsequent loading and execution (see Section 1.6.3). For complete details of CP/M's assembly
language program, see Section 3.

The source file for assembly is taken from an alternate disk by prefixing the assembly language
filename by a disk drive name. The command

ASM B:ALPHA

loads the assembler from the currently logged drive and processes the source program
ALPHA.ASM on drive B. The HEX and PRN files are also placed on drive B in this case.

1.6 Transient Commands CP/M Operating System Manual

1-23

1.6.3 LOAD Command

Syntax:

LOAD ufn

The LOAD command reads the file ufn, which is assumed to contain HEX format machine code,
and produces a memory image file that can subsequently be executed. The filename ufn is
assumed to be of the form:

X.HEX

and only the filename X need be specified in the command. The LOAD command creates a file
named

X.COM

that marks it as containing machine executable code. The file is actually loaded into memory and
executed when the user types the filename X immediately after the prompting character > printed
by the CCP.

Generally, the CCP reads the filename X following the prompting character and looks for a
built-in function name. If no function name is found, the CCP searches the system disk directory
for a file by the name

X.COM

If found, the machine code is loaded into the TPA, and the program executes. Thus, the user need
only LOAD a hex file once; it can be subsequently executed any number of times by typing the
primary name. This way, you can invent new commands in the CCP. Initialized disks contain the
transient commands as COM files, which are optionally deleted. The operation takes place on an
alternate drive if the filename is prefixed by a drive name. Thus,

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk and operates on drive B
after execution begins.

1.6 Transient Commands CP/M Operating System Manual

1-24

Note: the BETA.HEX file must contain valid Intel format hexadecimal machine code records
(as produced by the ASM program, for example) that begin at 100H of the TPA. The addresses in
the hex records must be in ascending order; gaps in unfilled memory regions are filled with
zeroes by the LOAD command as the hex records are read. Thus, LOAD must be used only for
creating CP/M standard COM files that operate in the TPA. Programs that occupy regions of
memory other than the TPA are loaded under DDT.

1.6.4 PIP

Syntax:

PIP
PlP destination=source#1,source#2,...,source#n

PIP is the CP/M Peripheral Interchange Program that implements the basic media conversion
operations necessary to load, print, punch, copy, and combine disk files. The PIP program is
initiated by typing one of the following forms:

PIP
PIP command line

In both cases PIP is loaded into the TPA and executed. In the first form, PIP reads command
lines directly from the console, prompted with the * character, until an empty command line is
typed (for example, a single carriage return is issued by the operator). Each successive command
line causes some media conversion to take place according to the rules shown below.

In the second form, the PIP command is equivalent to the first, except that the single command
line given with the PIP command is automatically executed, and PIP terminates immediately with
no further prompting of the console for input command lines. The form of each command line is

destination=source#1,source#2,...,source#n

where destination is the file or peripheral device to receive the data, and source#1,...,source#n is
a series of one or more files or devices that are copied from left to right to the destination.

1.6 Transient Commands CP/M Operating System Manual

1-25

When multiple files are given in the command line (for example, n>1), the individual files are
assumed to contain ASCII characters, with an assumed CP/M end-of-file character (CTRL-Z) at
the end of each file (see the O parameter to override this assumption). Lower-case ASCII
alphabetics are internally translated to upper-case to be consistent with CP/M file and device
name conventions. Finally, the total command line length cannot exceed 255 characters. CTRL-E
can be used to force a physical carriage return for lines that exceed the console width.

The destination and source elements are unambiguous references to CP/M source files with or
without a preceding disk drive name. That is, any file can be referenced with a preceding drive
name (A: through P:) that defines the particular drive where the file can be obtained or stored.
When the drive name is not included, the currently logged disk is assumed. The destination file
can also appear as one or more of the source files; in which case the source file is not altered
until the entire concatenation is complete. If it already exists, the destination file is removed if
the command line is properly formed. It is not removed if an error condition arises. The
following command lines, with explanations to the right, are valid as input to PIP:

 X=Y Copies to file X from file Y, where X and Y are unambiguous
filenames; Y remains unchanged.

 X=Y,Z Concatenates files Y and Z and copies to file X, with Y and Z
unchanged.

 X.ASM=Y.ASM,Z.ASM Creates the file X.ASM from the concatenation of the Y and
Z.ASM files.

 NEW.ZOT=B:OLD.ZAP Moves a copy of OLD.ZAP from drive B to the currently logged
disk; names the file NEW.ZOT.

 B:A.U=B:B.V,A:C.W,D.X Concatenates file B.Y from drive B with C.W from drive A and
D.X from the logged disk; creates the file A.U on drive B.

1.6 Transient Commands CP/M Operating System Manual

1-26

For convenience, PIP allows abbreviated commands for transferring files between disk drives.
The abbreviated PIP forms are

PIP d:=afn
PIP d1:=d2:afn
PIP ufn=d2:
PlP d1:ufn=d2:

The first form copies all files from the currently logged disk that satisfy the afn to the same files
on drive d, where d = A...P. The second form is equivalent to the first, where the source for the
copy is drive d2 where d2 = A ... P. The third form is equivalent to the command PIP
d1:ufn=d2:ufn which copies the file given by ufn from drive d2 to the file ufn on drive d1. The
fourth form is equivalent to the third, where the source disk is explicitly given by d2.

The source and destination disks must be different in all of these cases. If an afn is specfied, PIP
lists each ufn that satisfies the afn as it is being copied. If a file exists by the same name as the
destination file, it is removed after successful completion of the copy and replaced by the copied
file.

The following PIP commands give examples of valid disk-to-disk copy operations:

 B=*.COM Copies all files that have the secondary name COM to drive B from
the current drive.

 A:=B:ZAP.* Copies all files that have the primary name ZAP to drive A from
drive B.

 ZAP.ASM=B: Same as ZAP.ASM=B:ZAP.ASM

 B:ZOT.COM=A: Same as B:ZOT.COM=A:ZOT.COM

 B:=GAMMA.BAS Same as B:GAMMA.BAS=GAMMA.BAS

 B:=A:GAMMA.BAS Same as B:GAMMA.BAS=A:GAMMA.BAS

1.6 Transient Commands CP/M Operating System Manual

1-27

PIP allows reference to physical and logical devices that are attached to the CP/M svstem. The
device names are the same as given under the STAT command, along with a number of specially
named devices. The following is a list of logical devices given in the STAT command

CON: (console)
RDR: (reader)
PUN: (punch)
LST: (list)

while the physical devices are

TTY: (console , reader, punch, or list)
CRT: (console, or list), UC1: (console)
PTR: (reader), URI: (reader), UR2: (reader)
PTP: (punch), UPI: (punch), UP2: (punch)
LPT: (list), ULI: (list)

The BAT: physical device is not included, because this assignment is used only to indicate that
the RDR: and LST: devices are used for console input/output.

The RDR, LST, PUN, and CON devices are all defined within the BIOS portion of CP/M, and
are easily altered for any particular I/O system. The current physical device mapping is defined
by IOBYTE; see Section 6 for a discussion of this function. The destination device must be
capable of receiving data, for example, data cannot be sent to the punch, and the source devices
must be capable of generating data, for example, the LST: device cannot be read.

The following list describes additional device names that can be used in PIP commands.

 -NUL: sends 40 nulls (ASCII 0s) to the device. This can be issued at the end of punched
output.

 -EOF: sends a CP/M end-of-file (ASCII CTRL-Z) to the destination device (sent automatically
 at the end of all ASCII data transfers through PIP).

 -INP: is a special PIP input source that can be patched into the PIP program. PIP gets the input
 data character-by-character, by CALLing location 103H, with data returned in location
 109H (parity bit must be zero).

1.6 Transient Commands CP/M Operating System Manual

1-28

 -OUT: is a special PIP output destination that can be patched into the PIP program. PIP CALLs
 location 106H with data in register C for each character to transmit. Note that locations
 109H through 1FFH of the PIP memory image are not used and can be replaced by
 special purpose drivers using DDT (see Section 4).

 -PRN: is the same as LST:, except that tabs are expanded at every eighth character position,
 lines are numbered, and page ejects are inserted every 60 lines with an initial eject (same

 as using PIP options [t8np]).

File and device names can be interspersed in the PIP commands. In each case, the specific
device is read until end-of-file (CTRL-Z for ASCII files, and end-of-data for non-ASCII disk
files). Data from each device or file are concatenated from left to right until the last data source
has been read.

The destination device or file is written using the data from the source files, and an end-of-file
character, CTRL-Z, is appended to the result for ASCII files. If the destination is a disk file, a
temporary file is created ($$$ secondary name) that is changed to the actual filename only on
successful completion of the copy. Files with the extension COM are always assumed to be
non-ASCII.

The copy operation can be aborted at any time by pressing any key on the keyboard. PIP responds
with the message ABORTED to indicate that the operation has not been completed. If any
operation is aborted, or if an error occurs during processing, PIP removes any pending commands
that were set up while using the SUBMIT command.

PIP performs a special function if the destination is a disk file with type HEX (an Intel
hex-formatted machine code file), and the source is an external peripheral device, such as a paper
tape reader. In this case, the PIP program checks to ensure that the source file contains a properly
formed hex file, with legal hexadecimal values and checksum records.

When an invalid input record is found, PIP reports an error message at the console and waits for
corrective action. Usually, you can open the reader and rerun a section of the tape (pull the tape
back about 20 inches). When the tape is ready for the reread, a single carriage return is typed at
the console, and PIP attempts another read. If the tape position cannot be properly read, continue
the read by typing a return following the error message, and enter the record manually with the
ED program after the disk file is constructed.

PIP allows the end-of-file to be entered from the console if the source file is an RDR: device. In
this case, the PIP program reads the device and monitors the keyboard. If CTRL-Z is typed at the
keyboard, the read operation is terminated normally.

1.6 Transient Commands CP/M Operating System Manual

1-29

The following are valid PIP commands:

PIP LST:=X.PRN

Copies X.PRN to the LST device and terminates the PIP program.

PIP

Starts PIP for a sequence of commands. PIP prompts with *.

*CON:=X.ASM,Y.ASM,Z.ASM

Concatenates three ASM files and copies to the CON device.

*X.HEX=CON:,Y.HEX,PTR:

Creates a HEX file by reading the CON until a CTRL-Z is typed, followed by data
from Y.HEX and PTR until a CTRL-Z is encountered.

PIP PUN:=NUL:,X.ASM,EOF:,NUL:

Sends 40 nulls to the punch device; copies the X.ASM file to the punch, followed
by an end-of-file, CTRL-Z, and 40 more null characters.

(carriage return)

A single carriage return stops PIP.

You can also specify one or more PIP parameters, enclosed in left and right square brackets,
separated by zero or more blanks. Each parameter affects the copy operation, and the enclosed
list of parameters must immediately follow the affected file or device. Generally, each parameter
can be followed by an optional decimal integer value (the S and Q parameters are exceptions).
Table 1-4 describes valid PIP parameters.

1.6 Transient Commands CP/M Operating System Manual

1-30

 Table 1-4. PIP Parameters

Parameter Meaning

 B Blocks mode transfer. Data are buffered by PIP until an ASCII x-off character,
CTRL-S, is received from the source device. This allows transfer of data to a disk
file from a continuous reading device, such as a cassette reader. Upon receipt of
the x-off, PIP clears the disk buffers and returns for more input data. The amount
of data that can be buffered depends on the memory size of the host system. PIP
issues an error message if the buffers overflow.

 Dn Deletes characters that extend past column n in the transfer of data to the

destination from the character source. This parameter is generally used to truncate
long lines that are sent to a narrow printer or console device.

 E Echoes all transfer operations to the console as they are being performed.

 F Filters form-feeds from the file. All embedded form-feeds are removed. The P
parameter can be used simultaneously to insert new form-feeds.

 Gn Gets file from user number n (n in the range 0-15).

 H Transfers HEX data. All data are checked for proper Intel hex file format.
Nonessential characters between hex records are removed during the copy
operation. The console is prompted for corrective action in case errors occur.

 I Ignores :00 records in the transfer of Intel hex format file. The I parameter
automatically sets the H parameter.

 L Translates upper-case alphabetics to lower-case.

 N Adds line numbers to each line transferred to the destination, starting at one and
incrementing by 1. Leading zeroes are suppressed, and the number is followed by

a colon. If N2 is specified, leading zeroes are included and a tab is inserted
following the number. The tab is expanded if T is set.

1.6 Transient Commands CP/M Operating System Manual

1-31

 O Transfers non-ASCII object files. The normal CP/M end-of-file is ignored.

 Pn Includes page ejects at every n lines with an initial page eject. If n = 1 or is
excluded altogether, page ejects occur every 60 lines. If the F parameter is

used, form-feed suppression takes place before the new page ejects are inserted.

 QS^Z Quits copying from the source device or file when the string S, terminated by
CTRL-Z, is encountered.

 R Reads system files.

 Ss^Z Start copying from the source device when the string s, terminated by CTRL-Z, is
encountered. The S and Q parameters can be used to abstract a particular section
of a file, such as a subroutine. The start and quit strings are always included in the
copy operation.

If you specify a command line after the PIP command keyword, the CCP
translates strings following the S and Q parameters to uppercase. If you do not
specify a command line, PIP does not perform the automatic upper-case
translation.

 Tn Expands tabs, CTRL-I characters, to every nth column during the transfer of

characters to the destination from the source.

 U Translates lower-case alphabetics to upper-case during the copy operation.

 V Verifies that data have been copied correctly by rereading after the write operation

(the destination must be a disk file).

 W Writes over R/O files without console interrogation.

 Z Zeros the parity bit on input for each ASCII character.

1.6 Transient Commands CP/M Operating System Manual

1-32

The following examples show valid PIP commands that specify parameters in the file transfer.

PIP X.ASM=B:[V]

Copies X.ASM from drive B to the current drive and verifies that the data were
properly copied.

PIP LPT:=X.ASM[NT8U]

Copies X.ASM to the LPT: device; numbers each line, expands tabs to every
eighth column, and translates lower-case alphabetics to upper-case.

PIP PUN:=X.HEX[I],Y.ZOT[H]

First copies X.HEX to the PUN: device and ignores the trailing :00 record in
X.HEX; continues the transfer of data by reading Y.ZOT, which contains HEX
records, including any :00 records it contains.

PIP X.LIB=Y.ASM[sSUBR1:^zqJMP L3^z]

Copies from the file Y.ASM into the file X.LIB. The command starts the copy
when the string SUBR1: has been found, and quits copying after the string JMP

L3 is encountered.

PIP PRN:=X.ASM[p50]

Sends X.ASM to the LST: device with line numbers, expands tabs to every eighth
column, and elects pages at every 50th line. The assumed parameter list for a PRN

file is nt8p60; p50 overrides the default value.

Under normal operation, PIP does not overwrite a file that is set to a permanent R/O status. If an
attempt is made to overwrite an R/O file, the following prompt appears:

DESTINATION FILE IS R/O, DELETE (Y/N)?

If you type Y, the file is overwritten. Otherwise, the following response appears:

** NOT DELETED **

1.6 Transient Commands CP/M Operating System Manual

1-33

The file transfer is skipped, and PIP continues with the next operation in sequence. To avoid the
prompt and response in the case of R/O file overwrite, the command line can include the W
parameter, as shown in this example:

PIP A:=B:*.COM[W]

The W parameter copies all nonsystem files to the A drive from the B drive and overwrites any
R/O files in the process. If the operation involves several concatenated files, the W parameter
need only be included with the last file in the list, as in this example:

PIP A.DAT=B.DAT,F:NEW.DAT,G:OLD.DAT[W]

Files with the system attribute can be included in PIP transfers if the R parameter is included;
otherwise, system files are not recognized. For example, the command line:

PIP ED.COM=B:ED.COM[R]

reads the ED.COM file from the B drive, even if it has been marked as an R/O and system file.
The system file attributes are copied, if present.

Downward compatibility with previous versions of CP/M is only maintained if the file does not
exceed one megabyte, no file attributes are set, and the file is created by user 0. If compatibility is
required with nonstandard, for example, double-density versions of 1.4, it might be necessary to
select 1.4 compatibility mode when constructing the internal disk parameter block. See Section 6
and refer to Section 6.10, which describes BIOS differences.

Note:to copy files into another user area, PIP.COM must be located in that user area. Use the
following procedure to make a copy of PIP.COM in another user area.

USER 0 Log in user 0.
DDT PIP.COM (note PIP size s) Load PIP to memory.
GO Return to CCP.
USER 3 Log in user 3.
SAVE s PIP.COM

In this procedure, s is the integral number of memory pages, 256- byte segments, occupied by
PIP. The number s can be determined when PIP.COM is loaded under DDT, by referring to the
value under the NEXT display. If, for example, the next available address is 1D00, then
PIP.COM requires 1C hexadecimal pages, or 1 times 16 + 12 = 28 pages, and the value of s is 28
in the subsequent save. Once PIP is copied in this manner, it can be copied to another disk
belonging to the same user number through normal PIP transfers.

1.6 Transient Commands CP/M Operating System Manual

1-34

1.6.5 ED Command

Syntax:

ED ufn

The ED program is the CP/M system context editor that allows creation and alteration of ASCII
files in the CP/M environment. Complete details of operation are given in Section 2. ED allows
the operator to create and operate upon source files that are organized as a sequence of ASCII
characters, separated by end-of-line characters (a carriage return/line-feed sequence). There is no
practical restriction on line length (no single line can exceed the size of the working memory)
that is defined by the number of characters typed between carriage returns.

The ED program has a number of commands for character string searching, replacement, and
insertion that are useful for creating and correcting programs or text files under CP/M. Although
the CP/M has a limited memory work space area (approximately 5000 characters in'a 20K CP/M
system), the file size that can be edited is not limited, since data are easily paged through this
work area.

If it does not exist, ED creates the specified source file and opens the file for access. If the source
file does exist, the programmer appends data for editing (see the A command). The appended
data can then be displayed, altered, and written from the work area back to the disk (see the W
command). Particular points in the program can be automatically paged and located by context,
allowing easy access to particular portions of a large file (see the N command).

If you type the following command line:

ED X.ASM

the ED program creates an intermediate work file with the name

X.$$$

to hold the edited data during the ED run. Upon completion of ED, the X.ASM file (original file)
is renamed to X.BAK, and the edited work file is renamed to X.ASM. Thus, the X.BAK file
contains the original unedited file, and the X.ASM file contains the newly edited file. The
operator can always return to the previous version of a file by removing the most recent version
and renaming the previous version. If the current X.ASM file has been improperly edited, the
following sequence of commands reclaim the backup file.

1.6 Transient Commands CP/M Operating System Manual

1-35

 DIR X.*Checks to see that BAK file is available.

 ERA X.ASMErases most recent version.

 REN X.ASM=X.BAKRenames the BAK file to ASM.

You can abort the edit at any point (reboot, power failure, CTRL-C, or CTRL-Q command)
without destroying the original file. In this case, the BAK file is not created and the original file
is always intact.

The ED program allows the user to edit the source on one disk and create the back-up file on
another disk. This form of the ED command is

ED ufn d:

where ufn is the name of the file to edit on the currently logged disk and d is the name of an
alternate drive. The ED program reads and processes the source file and writes the new file to
drive d using the name ufn. After processing, the original file becomes the back-up file. If the
operator is addressing disk A, the following command is valid.

ED X.ASM B:

This edits the file X.ASM on drive A, creating the new file X.$$$ on drive B. After a successfuI
edit, A:X.ASM is renamed to A:X.BAK, and B:X.$$$ is renamed to B:X.ASM. For
convenience, the currently logged disk becomes drive B at the end of the edit. Note that if a file
named B:X.ASM exists before the editing begins, the following message appears on the screen:

FILE EXISTS

This message is a precaution against accidentally destroying a source file. You should first erase
the existing file and then restart the edit operation.

1.6 Transient Commands CP/M Operating System Manual

1-36

Similar to other transient commands, editing can take place on a drive different from the
currently logged disk by preceding the source filename by a drive name. The following are
examples of valid edit requests:

 ED A:X.ASMEdits the file X ASM on drive A, with new file and back-up on drive A.

 ED B:X.ASM A:Edits the file X.ASM on drive B to the temporary file X.$$$ on drive A.
After editing, this command changes X.ASM on drive B to X.BAK and changes X.$$$ on drive
A to X.ASM

1.6.6 SYSGEN Command

Syntax:

SYSGEN

The SYSGEN transient command allows generation of an initialized disk containing the CP/M
operating system. The SYSGEN program prompts the console for commands by interacting as
shown.

SYSGEN<cr>

Initiates the SYSGEN program.

SYSGEN VERSION x.x

SYSGEN sign-on message.

SOURCE DRIVE NAME
(OR RETURN TO SKIP)

Respond with the drive name (one of the letters A, B, C, or D) of the disk
containing a CP/M system, usually A. If a copy of CP/M already exists in memory

due to a MOVCPM command, press only a carriage return. Typing a drive
name d causes the response:

SOURCE ON d THEN TYPE RETURN

Place a disk containing the CP/M operating system on drive d (d is one of A, B, C,
or D). Answer by pressing a carriage return when ready.

1.6 Transient Commands CP/M Operating System Manual

1-37

FUNCTION COMPLETE

System is copied to memory. SYSGEN then prompts with the following:

DESTINATION DRIVE NAME
(OR RETURN TO REBOOT)

If a disk is being initialized, place the new disk into a drive and answer with the
drive name. Otherwise, press a carriage return and the system reboots from drive
A. Typing drive name d causes SYSGEN to prompt with the following message:

DESTINATION ON d
THEN TYPE RETURN

Place new disk into drive d; press return when ready.

FUNCTION COMPLETE

New disk is initialized in drive d.

The DESTINATION prompt is repeated until a single carriage return is pressed at the console, so
that more than one disk can be initialized.

Upon completion of a successful system generation, the new disk contains the operating system,
and only the built-in commands are available. An IBM-compatible disk appears to CP/M as a
disk with an empty directory; therefore, the operator must copy the appropriate COM files from
an existing CP/M disk to the newly constructed disk using the PIP transient.

You can copy all files from an existing disk by typing the following PIP command:

PIP B:=A:*.*[v]

This command copies all files from disk drive A to disk drive B and verifies that each file has
been copied correctly. The name of each file is displayed at the console as the copy operation
proceeds.

Note that a SYSGEN does not destroy the files that already exist on a disk; it only constructs a
new operating system. If a disk is being used only on drives B through P and will never be the
source of a bootstrap operation on drive A, the SYSGEN need not take place.

1.6 Transient Commands CP/M Operating System Manual

1-38

1.6.7 SUBMIT Command

Syntax:

SUBMIT ufn parm#l ... parm#n

The SUBMIT command allows CP/M commands to be batched for automatic processing. The
ufn given in the SUBMIT command must be the filename of a file that exists on the currently
logged disk, with an assumed file type of SUB. The SUB file contains CP/M prototype
commands with possible parameter substitution. The actual parameters parm#1 ... parm#n are
substituted into the prototype commands, and, if no errors occur, the file of substituted
commands are processed sequentially by CP/M.

The prototype command file is created using the ED program, with interspersed $ parameters of
the form:

$1 $2 $3 ... Sn

corresponding to the number of actual parameters that will be included when the file is submitted
for execution. When the SUBMIT transient is executed, the actual parameters parm#1 ... parm#n
are paired with the formal parameters $1 ... $n in the prototype commands. If the numbers of
formal and actual parameters do not correspond, the SUBMIT function is aborted with an error
message at the console. The SUBMIT function creates a file of substituted commands with the
name

$$$.SUB

on the logged disk. When the system reboots, at the termination of the SUBMIT, this command
file is read by the CCP as a source of input rather than the console. If the SUBMIT function is
performed on any disk other than drive A, the commands are not processed until the disk is
inserted into drive A and the system reboots. You can abort command processing at any time by
pressing the rubout key when the command is read and echoed. In this case, the $$$.SUB file is
removed and the subsequent commands come from the console. Command processing is also
aborted if the CCP detects an error in any of the commands. Programs that execute under CP/M
can abort processing of command files when error conditions occur by erasing any existing
$$$.SUB file.

To introduce dollar signs into a SUBMIT file, you can type a $$ which reduces to a single $
within the command file. An up arrow, ^|, precedes an alphabetic character s, which produces a
single CTRL-X character within the file.

1.6 Transient Commands CP/M Operating System Manual

1-39

The last command in a SUB file can initiate another SUB file, allowing chained batch
commands.

Suppose the file ASMBL.SUB exists on disk and contains the prototype commands:

ASM $1
DIR $1.*
ERA *.BAK
PIP $2:=$1.PRN
ERA $1.PRN

then, you issue the following command:

SUBMIT ASMBL X PRN

The SUBMIT program reads the ASMBL.SUB file, substituting X for all occurrences of $1 and
PRN for all occurrences of $2. This results in a $$$.SUB file containing the commands:

ASM X
DIR X.*
ERA *.BAK
PIP PRN:=X.PRN
ERA X.PRN

which are executed in sequence by the CCP.

The SUBMIT function can access a SUB file on an alternate drive by preceding the filename by a
drive name. Submitted files are only acted upon when they appear on drive A. Thus, it is possible
to create a submitted file on drive B that is executed at a later time when inserted in drive A.

1.6 Transient Commands CP/M Operating System Manual

1-40

An additional utility program called XSUB extends the power of the SUBMIT facility to include
line input to programs as well as the CCP. The XSUB command is included as the first line of
the SUBMIT file. When it is executed, XSUB self-relocates directly below the CCP. All
subsequent SUBMIT command lines are processed by XSUB so that programs that read buffered
console input, BDOS Function 10, receive their input directly from the SUBMIT file. For
example, the file SAVER.SUB can contain the following SUBMIT lines:

XSUB
DDT
I $1.COM
R
G0
SAVE 1 $2.COM

a subsequent SUBMIT command, such as

A:SUBMIT SAVER PIP Y

substitutes PIP for $1 and Y for $2 in the command stream. The XSUB program loads, followed
by DDT, which is sent to the command lines PIP.COM, R, and G0, thus returning to the CCP.
The final command SAVE 1 Y.COM is processed by the CCP.

The XSUB program remains in memory and prints the message

(xsub active)

on each warm start operation to indicate its presence. Subsequent SUBMIT command streams
do not require the XSUB, unless an intervening cold start occurs. Note that XSUB must be
loaded after the optional CP/M DESPOOL utility, if both are to run simultaneously.

1.6.8 DUMP Command

Syntax:

DUMP ufn

The DUMP program types the contents of the disk file (ufn) at the console in hexadecimal form.
The file contents are listed sixteen bytes at a time, with the absolute byte address listed to the left
of each line in hexadecimal. Long typeouts can be aborted by pressing the rubout key during
printout. The source listing of the DUMP program is given in Section 5 as an example of a
program written for the CP/M environment.

1.6 Transient Commands CP/M Operating System Manual

1-41

1.6.9 MOVCPM Command

Syntax:

MOVCPM

The MOVCPM program allows you to reconfigure the CP/M system for any particular memory
size. Two optional parameters can be used to indicate the desired size of the new system and the
disposition of the new system at program termination. If the first parameter is omitted or an * is
given, the MOVCPM program reconfigures the system to its maximum size, based upon the
kilobytes of contigous RAM in the host system (starting at 0000H). If the second parameter is
omitted, the system is executed, but not permanently recorded; if * is given, the system is left in
memory, ready for a SYSGEN operation. The MOVCPM program relocates a memory image of
CP/M and places this image in memory in preparation for a system generation operation. The
following is a list of MOVCPM command forms:

 MOYCPM Relocates and executes CP/M for management of the current memory
configuration (memory is examined for contiguous RAM, starting at
100H). On completion of the relocation, the new system is executed but
not permanently recorded on the disk. The system that is constructed
contains a BIOS for the Intel MDS 800.

 MOVCPM n Creates a relocated CP/M system for management of an n kilobyte system
(n must be in the range of 20 to 64), and executes the system as described.

 MOYCPM * * Constructs a relocated memory image for the current memory
configuration, but leaves the memory image in memory in preparation for

a SYSGEN operation.

 MOYCPM n * Constructs a relocated memory image for an n kilobyte memory system,
and leaves the memory image in preparation for a SYSGEN operation.

1.6 Transient Commands CP/M Operating System Manual

1-42

For example, the command,

MOVCPM * *

constructs a new version of the CP/M system and leaves it in memory, ready for a SYSGEN
operation. The message

READY FOR 'SYSGEN' OR
'SAYE 34 CPMxx.COM'

appears at the console upon completion, where xx is the current memory size in kilobytes. You
can then type the following sequence:

SYSGEN This starts the system generation.

SOURCE DRIVE NAME Respond with a carriage return to skip the CP/M read (OR
RETURN TO SKIP) operation, because the system is already in memory as a

result of the previous MOVCPM operation.

DESTINATION DRIVE NAME Respond with B to write new system to the disk in drive B.
OR RETURN TO REBOOT) SYSGEN prompts with the following message:

DESTINATION ON B, Place the new disk on drive B and press the RETURN key
THEN TYPE RETURN when ready.

If you respond with A rather than B above, the system is written to drive A rather than B.
SYSGEN continues to print this prompt:

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

until you respond with a single carriage return, which stops the SYSGEN program with a system
reboot.

1.6 Transient Commands CP/M Operating System Manual

1-43

You can then go through the reboot process with the old or new disk. Instead of performing the
SYSGEN operation, you can type a command of the form:

SAVE 34 CPMxx.COM

at the completion of the MOVCPM function, where xx is the value indicated in the SYSGEN
message. The CP/M memory image on the currently logged disk is in a form that can be patched.
This is necessary when operating in a nonstandard environment where the BIOS must be altered
for a particular peripheral device configuration, as described in Section 6.

The following are valid MOVCPM commands:

 MOVCPM 48 Constructs a 48K version of CP/M and starts execution.

 MOVCPM 48 * Constructs a 48K version of CP/M in preparation for permanent
recording; the response is

READY FOR 'SYSGEN' OR
 'SAVE 34 CPM48.COM'

 MOVCPM Constructs a maximum memory version of CP/M and starts
execution.

The newly created system is serialized with the number attached to the original disk and is
subject to the conditions of the Digital Research Software Licensing Agreement.

1.7 BDOS Error Messages

There are three error situations that the Basic Disk Operating System intercepts during file
processing. When one of these conditions is detected, the BDOS prints the message:

BDOS ERR ON d: error

where d is the drive name and error is one of the three error messages:

BAD SECTOR
SELECT
READ ONLY

1.6 Transient Commands CP/M Operating System Manual

1-44

The BAD SECTOR message indicates that the disk controller electronics has detected an error
condition in reading or writing the disk. This condition is generally caused by a malfunctioning
disk controller or an extremely worn disk. If you find that CP/M reports this error more than once
a month, the state of the controller electronics and the condition of the media should be checked.

You can also encounter this condition in reading files generated by a controller produced by a
different manufacturer. Even though controllers claim to be IBM compatible, one often finds
small differences in recording formats. The MDS-800 controller, for example, requires two bytes
of ones following the data CRC byte, which is not required in the IBM format. As a result, disks
generated by the Intel MDS can be read by almost all other IBM-compatible systems, while disk
files generated on other manufacturers' equipment produce the BAD SECTOR message when
read by the MDS. To recover from this condition, press a CTRL-C to reboot (the safest course),
or a return, which ignores the bad sector in the file operation.

Note:pressing a return might destroy disk integrity if the operation is a directory write. Be sure
you have adequate back-ups in this case.

The SELECT error occurs when there is an attempt to address a drive beyond the range
supported by the BIOS. In this case, the value of d in the error message gives the selected drive.
The system reboots following any input from the console.

The READ ONLY message occurs when there is an attempt to write to a disk or file that has
been designated as Read-Only in a STAT command or has been set to Read-Only by the BDOS.
Reboot CP/M by using the warm start procedure, CTRL-C, or by performing a cold start
whenever the disks are changed. If a changed disk is to be read but not written, BDOS allows the
disk to be changed without the warm or cold start, but internally marks the drive as Read-Only.
The status of the drive is subsequently changed to Read-Write if a warm or cold start occurs. On
issuing this message, CP/M waits for input from the console. An automatic warm start takes
place following any input.

1.6 Transient Commands CP/M Operating System Manual

1-45

1.8 Operation of CP/M on the MDS

This section gives operating procedures for using CP/M on the Intel MDS microcomputer
development system. Basic knowledge of the MDS hardware and software systems is assumed.

CP/M is initiated in essentially the same manner as the Intel ISIS operating system. The disk
drives are labeled 0 through 3 on the MDS, corresponding to CP/M drives A through D,
respectively. The CP/M system disk is inserted into drive 0, and the BOOT and RESET switches
are pressed in sequence. The interrupt 2 light should go on at this point. The space bar is then
pressed on the system console, and the light should go out. If it does not, the user should check
connections and baud rates. The BOOT switch is turned off, and the CP/M sign-on message
should appear at the selected console device, followed by the A> system prompt. You can then
issue the various resident and transient commands.

The CP/M system can be restarted (warm start) at any time by pushing the INT 0 switch on the
front panel. The built-in Intel ROM monitor can be initiated by pushing the INT 7 switch, which
generates an RST 7, except when operating under DDT, in which case the DDT program gets
control instead.

Diskettes can be removed from the drives at any time, and the system can be shut down during
operation without affecting data integrity. Do not remove a disk and replace it with another
without rebooting the system (cold or warm start) unless the inserted disk is Read-Only.

As a result of hardware hang-ups or malfunctions, CP/M might print the following message:

BDDS ERR ON d: BAD SECTOR

where d is the drive that has a permanent error. This error can occur when drive doors are opened
and closed randomly, followed by disk operations, or can be caused by a disk, drive, or controller
failure. You can optionally elect to ignore the error by pressing a single return at the console. The
error might produce a bad data record, requiring reinitialization of up to 128 bytes of data. You
can reboot the CP/M system and try the operation again.

Termination of a CP/M session requires no special action, except that it is necessary to remove
the disks before turning the power off to avoid random transients that often make their way to the
drive electronics.

1.7 BDOS Error Messages CP/M Operating System Manual

1-46

You should use IBM-compatible disks rather than disks that have previously been used with any
ISIS version. In particular, the ISIS FORMAT operation produces nonstandard sector numbering
throughout the disk. This nonstandard numbering seriously degrades the performance of CP/M,
and causes CP/M to operate noticeably slower than the distribution version. If it becomes
necessary to reformat a disk, which should not be the case for standard disks, a program can be
written under CP/M that causes the MDS 800 controller to reformat with sequential sector
numbering (1-26) on each track.

Generally, IBM-compatible 8-inch disks do not need to be formatted. However, 5 1/4-inch disks
need to be formatted.

End of Section 1

1.8 Operation of CP/M on the MDS CP/M Operating System Manual

Section 2
The CP/M Editor

2.1 Introduction to ED

ED is the context editor for CP/M, and is used to create and alter CP/M source files. To start ED,
type a command of the following form:

ED filename

or

ED filename.typ

Generally, ED reads segments of the source file given by filename or filename.typ into the
central memory, where you edit the file and it is subsequently written back to disk after
alterations. If the source file does not exist before editing, it is created by ED and initialized to
empty. The overall operation of ED is shown in Figure 2-1.

2.1.1 ED Operation

ED operates upon the source file, shown in Figure 2-1 by x.y, and passes all text through a
memory buffer where the text can be viewed or altered. The number of lines that can be
maintained in the memory buffer varies with the line length, but has a total capacity of about
5000 characters in a 20K CP/M system.

Edited text material is written into a temporary work file under your command. Upon termination
of the edit, the memory buffer is written to the temporary file, followed by any remaining
(unread) text in the source file. The name of the original file is changed from x.y to x.BAK so
that the most recent edited source file can be reclaimed if necessary. See the CP/M commands
ERASE and RENAME. The temporary file is then changed from x.$$$ to x.y, which becomes
the resulting edited file.

1.8 Operation of CP/M on the MDS CP/M Operating System Manual

2-1

Figure 2-1. Overall ED Operation

The memory buffer is logically between the source file and working file, as shown in Figure 2-2.

2-2

Figure 2-2. Memory Buffer Organization

2.1.2 Text Transfer Functions

Given that n is an integer value in the range 0 through 65535, several single-letter ED commands
transfer lines of text from the source file through the memory buffer to the temporary (and
eventually final) file. Single letter commands are shown in upper-case, but can be typed in either
upper- or lower-case.

 Table 2-1. ED Text Transfer Commands

 Command Result

 nA Appends the next n unprocessed source lines from the source file at SP to the end
of the memory buffer at MP. Increment SP and MP by n. If upper-case translation
is set (see the U command) and the A command is typed in upper-case, all input
lines will automatically be translated to upper-case.

 nW Writes the first n lines of the memory buffer to the temporary file free space. Shift
the remaining lines n + 1 through MP to the top of the memory buffer.

Increment TP by n.

2.1 Introduction to ED CP/M Operating System Manual

2-3

 E Ends the edit. Copy all buffered text to temporary file and copy all unprocessed
source lines to temporary file. Rename files.

 H Moves to head of new file by performing automatic E command. The temporary
file becomes the new source file, the memory buffer is emptied, and a new

temporary file is created. The effect is equivalent to issuing an E
command, followed by a reinvocation of ED, using x.y as the file to edit.

 O Returns to original file. The memory buffer is emptied, the temporary file is
deleted, and the SP is returned to position 1 of the source file. The effects of the
previous editing commands are thus nullified.

 Q Quits edit with no file alterations, returns to CP/M.

There are a number of special cases to consider. If the integer n is omitted in any ED command
where an integer is allowed, then 1 is assumed. Thus, the commands A and W append one line
and write one line, respectively. In addition, if a pound sign # is given in the place of n, then the
integer 65535 is assumed (the largest value for n that is allowed). Because most source files can
be contained entirely in the memory buffer, the command #A is often issued at the beginning of
the edit to read the entire source file to memory. Similarly, the command #W writes the entire
buffer to the temporary file.

Two special forms of the A and W commands are provided as a convenience. The command OA
fills the current memory buffer at least half full, while OW writes lines until the buffer is at least
half empty. An error is issued if the memory buffer size is exceeded. You can then enter any
command, such as W, that does not increase memory requirements. The remainder of any partial
line read during the overflow will be brought into memory on the next successful append.

2.1.3 Memory Buffer Organization

The memory buffer can be considered a sequence of source lines brought in with the A command
from a source file. The memory buffer has an imaginary character pointer (CP) that moves
throughout the memory buffer under command of the operator.

2.1 Introduction to ED CP/M Operating System Manual

2-4

The memory buffer appears logically as shown in Figure 2-3, where the dashes represent
characters of the source line of indefinite length, terminated by carriage return (<cr>) and
line-feed (<If>) characters, and CP represents the imaginary character pointer. Note that the CP is
always located ahead of the first character of the first line, behind the last character of the last
line, or between two characters. The current line CL is the source line that contains the CP.

Figure 2-3. Logical Organization of Memory Buffer

2.1.4 Line Numbers and ED Start-up

ED produces absolute line number prefixes that are used to reference a line or range of lines. The
absolute line number is displayed at the beginning of each line when ED is in insert mode (see
the I command in Section 2.1.5). Each line number takes the form

nnnnn:

where nnnnn is an absolute line number in the range of 1 to 65535. If the memory buffer is empty
or if the current line is at the end of the memory buffer, nnnnn appears as 5 blanks.

2.1 Introduction to ED CP/M Operating System Manual

2-5

You can reference an absolute line number by preceding any command by a number followed by
a colon, in the same format as the line number display. In this case, the ED program moves the
current line reference to the absolute line number, if the line exists in the current memory buffer.
The line denoted by the absolute line number must be in the memory buffer (see the A
command). Thus, the command

345:T

is interpreted as move to absolute 345, and type the line.
Absolute line numbers are produced only during the editing
process and are not recorded with the file. In particular, the
line numbers will change following a deleted or expanded section
of text.

 You can also reference an absolute line number as a backward or forward distance from the
current line by preceding the absolute number by a colon. Thus, the command

:400T

is interpreted as type from the current line number through the line whose absolute number is
400. Combining the two line reference forms, the command

345::400T

is interpreted as move to absolute line 345, then type through absolute line 400. Absolute line
references of this sort can precede any of the standard ED commands.

Line numbering is controlled by the V (Verify Line Numbers) command. Line numbering can be
turned off by typing the -V command.

If the file to edit does not exist, ED displays the following message:

NEW FILE

To move text into the memory buffer, you must enter an i command before typing input lines and
terminate each line with a carriage return. A single CTRL-Z character returns ED to command
mode.

2.1 Introduction to ED CP/M Operating System Manual

2-6

2.1.5 Memory Buffer Operation

When ED begins, the memory buffer is empty. You can either append lines from the source file
with the A command, or enter the lines directly from the console with the insert command. The
insert command takes the following form:

I

ED then accepts any number of input lines. You must terminate each line with a <cr> (the <If >
is supplied automatically). A single CTRL-Z, denoted by an up arrow (T)Z, returns ED to
command mode. The CP is positioned after the last character entered. The following sequence:

I <cr>
NOW IS THE<cr>
TIME FOR<cr>
ALL GOOD MEN<cr>
^Z

leaves the memory buffer as

NOW IS THE<cr><If>
TIME FOR<cr><If>
ALL GOOD MEN<cr> <If>

Generally, ED accepts command letters in upper- or lower-case. If the command is upper-case,
all input values associated with the command are translated to upper-case. If the I command is
typed, all input lines are automatically translated internally to upper-case. The lower-case form of
the i command is most often used to allow both upper- and lower-case letters to be entered.

Various commands can be issued that control the CP or display source text in the vicinity of the
CP. The commands shown below with a preceding n indicate that an optional unsigned value can
be specified. When preceded by +-, the command can be unsigned, or have an optional preceding
plus or minus sign. As before, the pound sign # is replaced by 65535. If an integer n is optional,
but not supplied, then n=1 is assumed. Finally, if a plus sign is optional, but none is specified,
then + is assumed.

2.1 Introduction to ED CP/M Operating System Manual

2-7

 Table 2-2. Editing Commands

 Command Action

 +-B Move CP to beginning of memory buffer if + and to bottom if

 +-nC Move CP by +-n characters (moving ahead if +), counting the <cr><lf> as two
characters.

 +-nD Delete n characters ahead of CP if plus and behind CP if minus.

 +-nK Kill (remove) +-n lines of source text using CP as the current reference. If CP is
not at the beginning of the current line when K is issued, the characters before CP
remain if + is specified, while the characters after CP remain if - is given in the
command.

 +-nL If n = 0, move CP to the beginning of the current line, if it is not already there. If n
<> 0, first move the CP to the beginning of the current line and then move

it to the beginning of the line that is n lines down (if +) or up (if -). The CP will
stop at the top or bottom of the memory buffer if too large a value of n is
specified.

 +-nT If n = 0, type the contents of the current line up to CP. If n = 1, type the contents
of the current line from CP to the end of the line. If n>1, type the current line
along with n +- 1 lines that follow, if + is specified. Similarly, if n>1 and - is

given, type the previous n lines up to the CP. Any key can be depressed to abort
long type-outs.

 +-n Equivalent to +-nLT, which moves up or down and types a single line.

2.1.6 Command Strings

Any number of commands can be typed contiguously (up to the capacity of the console buffer)
and are executed only after you press the <cr>. Table 2-3 summarizes the CP/M console
line-editing commands used to control the input command line.

2.1 Introduction to ED CP/M Operating System Manual

2-8

 Table 2-3. Line-editing Controls

 Command Result

 CTRL-C Reboots the CP/M system when typed at the start of a line.

 CTRL-E Physical end of line: carriage is returned, but line is not sent until the
carriage return key is depressed.

 CTRL-H Backspaces one character position.

 CTRL-J Terminates current input (line-feed).

 CTRL-M Terminates current input (carriage return).

 CTRL-R Retypes current command line: types a clean line character deletion with
rubouts.

 CTRL-U Deletes the entire line typed at the console.

 CTRL-X Same as CTRL-U.

 CTRL-Z Ends input from the console (used in PIP and ED).

 rub/del Deletes and echos the last character typed at the console.

2.1 Introduction to ED CP/M Operating System Manual

2-9

Suppose the memory buffer contains the characters shown in the previous section, with the CP
following the last character of the buffer. In the following example, the command strings on the
left produce the results shown to the right. Use lower-case command letters to avoid automatic
translation of strings to upper-case.

 Command String Effect

 B2T<cr> Move to beginning of the buffer and type two lines:

NOW IS THE
TIME FOR

The result in the memory buffer is

^NOW IS THE<cr><lf>
TIME FOR<cr><lf>
ALL GOOD MEN<cr><lf>

 5C0T<cr> Move CP five characters and type the beginning of the line
NOW 1. The result in the memory buffer is

NOW I^S THE<cr><lf>

 2L-T<cr> Move two lines down and type the previous line TIME
FOR. The result in the memory buffer is

NOW IS THE<cr><lf>
TIME FOR<cr><lf>
^ALL GOOD MEN<cr><lf>

 -L#K<cr> Move up one line, delete 65535 lines that follow. The result
in the memory buffer is

NOW IS THE<cr><lf>^

I<cr> Insert two lines of text with automatic translation to
TIME TO<cr> upper-case. The result in the memory buffer is
INSERT<cr>
^Z NOW IS THE<cr><lf>

TIME TO<cr><lf>
INSERT<cr><lf>^

2.1 Introduction to ED CP/M Operating System Manual

2-10

 -2L#T<cr> Move up two lines and type 65535 lines ahead of CP NOW
IS THE. The result in the memory buffer is

NOW IS THE<cr><lf>
^TIME TO<cr><lf>
INSERT<cr><lf>

 <cr> Move down one line and type one line INSERT. The result
in the memory buffer is

NOW IS THE<cr><lf>
TIME TO<cr><lf>
^INSERT<cr><lf>

2.1.7 Text Search and Alteration

ED has a command that locates strings within the memory buffer. The command takes the form

nFs<cr>

or

nFs^Z

where s represents the string to match, followed by either a <cr> or CTRL-Z, denoted by ^Z. ED
starts at the current position of CP and attempts to match the string. The match is attempted n
times and, if successful, the CP is moved directly after the string. If the n matches are not
successful, the CP is not moved from its initial position. Search strings can include CTRL-L,
which is replaced by the pair of symbols <cr><lf>.

2.1 Introduction to ED CP/M Operating System Manual

2-11

The following commands illustrate the use of the F command:

 Command String Effect

 B#T<cr> Move to the beginning and type the entire buffer. The result
in the memory buffer is

^NOW IS THE<cr><lf>
TIME FOR<cr><lf>
ALL GOOD MEN<cr><lf>

 FS T<cr> Find the end of the string S T. The result in the memory
buffer is

NOW IS T^HE<cr><lf>

 FIs^Z0TT Find the next I and type to the CP; then type the remainder
of the current line ME FOR. The result in the memory
buffer is

NOW IS THE<cr><lf>
TI^ME FOR<cr><lf>
ALL GOOD MEN<cr><lf>

An abbreviated form of the insert command is also allowed, which is often used in conjunction
with the F command to make simple textual changes. The form is

Is^Z

 or

Is<cr>

where s is the string to insert. If the insertion string is terminated by a CTRL-Z, the string is
inserted directly following the CP, and the CP is positioned directly after the string. The action is
the same if the command is followed by a <cr> except that a <cr><lf> is automatically inserted
into the text following the string. The following command sequences are examples of the F and I
commands:

2.1 Introduction to ED CP/M Operating System Manual

2-12

 Command String Effect

 BITHIS IS ^Z<cr> Insert THIS IS at the beginning of the text. The result in the
memory buffer is

THIS IS ^NOW THE<cr><lf>
TIME FOR<cr><lf>
ALL GOOD MEN<cr><lf>

 FTIME^Z-4DIPLACE^Z<cr> Find TIME and delete it; then insert PLACE. The result in
the memory buffer is

THIS IS NOW THE<cr><lf>
PLACE ^FOR<cr><lf>
ALL GOOD MEN<cr><lf>

 3FO^Z-3D5D1 Find third occurrence of O (that is, the second O in
CHANGES^Z<cr> GOOD), delete previous 3 characters and the subsequent 5

characters; then insert CHANGES. The result in the
memory buffer is

THIS IS NOW THE<cr><lf>
PLACE FOR<cr><lf>
ALL CHANGES^<cr><lf>

 -8CISOURCE<cr> Move back 8 characters and insert the line
SOURCE<cr><lf>. The result in the memory buffer is

THIS IS NOW THE<cr><lf>
PLACE FOR<cr><lf>
ALL SOURCE<cr><lf>
^CHANGES<cr><lf>

2.1 Introduction to ED CP/M Operating System Manual

2-13

ED also provides a single command that combines the F and I commands to perform simple
string substitutions. The command takes the following form:

nSs1^Zs2<cr>

or

nSs1^Zs2^Z

and has exactly the same effect as applying the following command string a total of n times:

Fs1^Z-kDIs2<cr>

or

Fs1^Z-kDIs2^Z

where k is the length of the string. ED searches the memory buffer starting at the current position
of CP and successively substitutes the second string for the first string untill the end of buffer, or
until the substitution has been performed n times.

As a convenience, a command similar to F is provided by ED that automatically appends and
writes lines as the search proceeds. The form is

nNs<cr>

or

nNs^Z

which searches the entire source file for the nth occurrence of the strings (you should recall that F
fails if the string cannot be found in the current buffer). The operation of the N command is
precisely the same as F except in the case that the string cannot be found within the current
memory buffer. In this case, the entire memory content is written (that is, an automatic #W is
issued). Input lines are then read until the buffer is at least half full, or the entire source file is
exhausted. The search continues in this manner until the string has been found n times, or until
the source file has been completely transferred to the temporary file.

2.1 Introduction to ED CP/M Operating System Manual

2-14

A final line editing function, called the Juxtaposition comniand, takes the form

nJs1^Zs2^Zs3<cr>

or

nJs1^Zs2^Zs3^Z

with the following action applied n times to the memory buffer: search from the current CP for
the next occurrence of the string S1. If found, insert the string S2, and move CP to follow S2.
Then delete all characters following CP up to, but not including, the string S3, leaving CP
directly after S2. If S3 cannot be found, then no deletion is made. If the current line is

NOW IS THE TIME<cr><If>

the command

JW^ZWHAT^Z^1<cr>

results in

NOW WHAT<cr><If>

You should recall that ^l (CTRL-L) represents the pair <cr><lf> in search and substitute strings.

The number of characters ED allows in the F, S, N, and j commands is limited to 100 symbols.

2.1.8 Source Libraries

ED also allows the inclusion of source libraries during the editing process with the R command.
The form of this command is

Rfilename^Z

or

Rfilename<cr>

2.1 Introduction to ED CP/M Operating System Manual

2-15

where filename is the primary filename of a source file on the disk with an assumed filetype of
LIB. ED reads the specified file, and places the characters into the memory buffer after CP, in a
manner similar to the I command. Thus, if the command

RMACRO<cr>

is issued by the operator, ED reads from the file MACRO.LIB until the end-of-file and
automatically inserts the characters into the memory buffer.

ED also includes a block move facility implemented through the X (Transfer) command. The
form

nX

transfers the next n lines from the current line to a temporary file called

X$$$$$$.LIB

which is active only during the editing process. You can reposition the current line reference to
any portion of the source file and transfer lines to the temporary file. The transferred lines
accumulate one after another in this file and can be retrieved by simply typing

R

which is the trivial case of the library read command. In this case, the entire transferred set of
lines is read into the memory buffer. Note that the X command does not remove the transferred
lines from the memory buffer, although a K command can be used directly after the X, and the R
command does not empty the transferred LIB file. That is, given that a set of lines has been
transferred with the X command, they can be reread any number of times back into the source
file. The command

0X

is provided to empty the transferred line file.

Note that upon normal completion of the ED program through Q or E, the temporary LIB file is
removed. If ED is aborted with a CTRL-C, the LIB file will exist if lines have been transferred,
but will generally be empty (a subsequent ED invocation will erase the temporary file).

2.1 Introduction to ED CP/M Operating System Manual

2-16

2.1.9 Repetitive Command Execution

The macro command M allows you to group ED commands together for repeated evaluation. The
M command takes the following form:

nMCS<cr>

or

nMCS^Z

where CS represents a string of ED commands, not including another M command. ED executes
the command string n times if n>1. If n=0 or 1, the command string is executed repetitively until
an error condition is encountered (for example, the end of the memory buffer is reached with an
F command).

As an example, the following macro changes all occurrences of GAMMA to DELTA within the
current buffer, and types each line that is changed:

MFGAMMA^Z-5DIDELTA^Z0TT<cr>

or equivalently

MSGAMMA^ZDELTA^Z0TT<cr>

2.1 Introduction to ED CP/M Operating System Manual

2-17

2.2 ED Error Conditions

On error conditions, ED prints the message BREAK X AT C where X is one of the error
indicators shown in Table 2-4.

 Table 2-4. Error Message Symbols

 Symbol Meaning

 ? Unrecognized command.

 > Memory buffer full (use one of the commands D, K, N, S, or W to remove
characters); F, N, or S strings too long.

 # Cannot apply command the number of times specified (for example, in F
command).

 O Cannot open LIB file in R command.

If there is a disk error, CP/M displays the following message:

BDOS ERR on d: BAD SECTOR

You can choose to ignore the error by pressing RETURN at the console (in this case, the memory
buffer data should be examined to see if they were incorrectly read), or you can reset the system
with a CTRL-C and reclaim the backup file if it exists. The file can be reclaimed by first typing
the contents of the BAK file to ensure that it contains the proper information. For example, type
the following:

TYPE x.BAK

where x is the file being edited. Then remove the primary file

ERA x.y

and rename the BAK file

REN x.y=x.BAK

The file can then be reedited, starting with the previous version.

2.1 Introduction to ED CP/M Operating System Manual

2-18

ED also takes file attributes into account. If you attempt to edit a Read-Only file, the message

** FILE IS READ/ONLY **

appears at the console. The file can be loaded and examined, but cannot be altered. You must end
the edit session and use STAT to change the file attribute to Riw. If the edited file has the system
attribute set, the following message:

'SYSTEM' FILE NOT ACCESSIBLE

is displayed and the edit session is aborted. Again, the STAT program can be used to change the
system attribute, if desired.

2.3 Control Characters and Commands

Table 2-5 summarizes the control characters and commands available in ED.

 Table 2-5. ED Control Characters

 Control Character Function

 CTRL-C System reboot

 CTRL-E Physical <cr><lf> (not actually entered in command)

 CTRL-H Backspace

 CTRL-J Logical tab (cols 1, 9, 16,...)

 CTRL-L Logical <cr><lf> in search and substitute strings

 CTRL-R Repeat line

 CTRL-U Line delete

 CTRL-X Line delete

 CTRL-Z String terminator

 rub/del Character delete

2.2 ED Error Conditions CP/M Operating System Manual

2-19

Table 2-6 summarizes the commands used in ED.
 Table 2-6. ED Commands

 Command Function

 nA Append lines

 +-B Begin or bottom of buffer

 +-nC Move character positions

 +-nD Delete characters

 E End edit and close files (normal end)

 nF Find string

 H End edit, close and reopen files

 I Insert characters, use i if both upper- and lower-case characters are to be entered.

 nJ Place strings in juxtaposition

 +-nK Kill lines

 +-nL Move down/up lines

 nM Macro definition

 nN Find next occurrence with autoscan

 O Return to original file

 +-nP Move and print pages

 Q Quit with no file changes

 R Read library file

2.2 ED Error Conditions CP/M Operating System Manual

2-20

 Command Function

 nS Substitute strings

 +-nT Type lines

 U Translate lower- to upper-case if U, no translation if -U

 V Verify line numbers, or show remaining free character space

 0V A special case of the V command, 0V, prints the memory buffer statistics in the
form

free/total

where free is the number of free bytes in the memory buffer (in decimal) and total
is the size of the memory buffer

 nW Write lines

 nZ Wait (sleep) for approximately n seconds

 +-n Move and type (+-nLT).

Because of common typographical errors, ED requires several potentially disastrous commands
to be typed as single letters, rather than in composite commands. The following commands:

 - E(end)
 - H(head)
 - O(original)
 - Q(quit)

must be typed as single letter commands.

2.3 Control Characters and Commands CP/M Operating System Manual

2-21

The commands I, J, M, N, R, and S should be typed as i, j, m, n, r, and s if both upper- and
lower-case characters are used in the operation, otherwise all characters are converted to
upper-case. When a command is entered in upper-case, ED automatically converts the associated
string to upper-case, and vice versa.

End of Section 2

2.3 Control Characters and Commands CP/M Operating System Manual

2-22

Section 3
CP/M Assembler

3.1 Introduction

The CP/M assembler reads assembly-language source files from the disk and produces 8080
machine language in Intel hex format. To start the CP/M assembler, type a command in one of
the following forms:

ASM filename
ASM filename.parms

In both cases, the assembler assumes there is a file on the disk with the name:

filename.ASM

which contains an 8080 assembly-language source file. The first and second forms shown above
differ only in that the second form allows parameters to be passed to the assembler to control
source file access and hex and print file destinations.

In either case, the CP/M assembler loads and prints the message:

CP/M ASSEMBLER VER n.n

where n.n is the current version number. In the case of the first command, the assembler reads the
source file with assumed filetype ASM and creates two output files

filename.HEX
filename.PRN

The HEX file contains the machine code corresponding to the original program in Intel hex
format, and the PRN file contains an annotated listing showing generated machine code, error
flags, and source lines. If errors occur during translation, they are listed in the PRN file and at the
console.

2.3 Control Characters and Commands CP/M Operating System Manual

3-1

The form ASM filename parms is used to redirect input and output files from their defaults. In
this case, the parms portion of the command is a three-letter group that 'fies the origin of the
source file, the destination of the hex file, and the destination of the print file. The form is

filename.p1p2p3

where p1, p2, and p3 are single letters. P1 can be

A,B,...,P

which designates the disk name that contains the source file. P2 can be

A,B,...,P

which designates the disk name that will receive the hex file; or, P2 can be

Z

which skips the generation of the hex file.

 P3 can be

A,B,...,P

which designates the disk name that will receive the print file. P3 can also be specified as

X

which places the listing at the console; or

Z

which skips generation of the print file. Thus, the command

ASM X.AAA

indicates that the source, X.HEX and print, X.PRN files are also to be created on disk A. This
form of the comii.,ind is implied if the assembler is run from disk A. Given that you are
currently addressing disk A, the above command is the same as

ASM X

3-2

The command

ASM X.ABX

indicates that the source file is to be taken from disk A, the hex file is to be placed on disk B, and
the listing file is to be sent to the console. The command

ASM X.BZZ

takes the source file from disk B and skips the generation of the hex and print files. This
command is useful for fast execution of the assembler to check program syntax.

The source program format is compatible with the Intel 8080 assembler. Macros are not
implemented in ASM; see the optional MAC macro assembler. There are certain extensions in
the CP/M assembler that make it somewhat easier to use. These extensions are described below.

3.2 Program Format

An assembly-language program acceptable as input to the assembler consists of a sequence of
statements of the form

line# label operation operand ;comment

where any or all of the fields may be present in a particular instance. Each assemblylanguage
statement is terminated with a carriage return and line-feed (the line-feed is inserted
automatically by the ED program), or with the character !, which is treated as an end-of-line by
the assembler. Thus, multiple assembly-language statements can be written on the same physical
line if separated by exclamation point symbols.

The line# is an optional decimal integer value representing the source program line number, and
ASM ignores this field if present.

The label field takes either of the following forms:

identifier
identifier:

The label field is optional, except where noted in particular statement types. The identifier is a
sequence of alphanumeric characters where the first character is alphabetic. Identifiers can be
freely used by the programmer to label elements such as program steps and assembler directives,
but cannot exceed 16 characters in length. All characters are significant in an identifier, except
for the embedded dollar symbol $, which can be used to improve readability of the name.
Further, all lower-case alphabetics are treated as upper-case. The following are all valid instances
of labels:

3.1 Introduction CP/M Operating System Manual

3-3

 x xy long$name
 x: yxl: longer$naned$data:
 X1Y2 X1x2 x234$5678$9012$3456:

The operation field contains either an assembler directive or pseudo operation, or an 8080
machine operation code. The pseudo operations and machine operation codes are described in
Section 3.3.

Generally, the operand field of the statement contains an expression formed out of constants and
labels, along with arithmetic and logical operations on these elements. Again, the complete
details of properly formed expressions are given in Section 3.3.

The comment field contains arbitrary characters following the semicolon symbol untill the next
real or logical end-of-line. These characters are read, listed, and otherwise ignored by the
assembler. The CP/M assembler also treats statements that begin with an * in column one as
comment statements that are listed and ignored in the assembly process.

The assembly-language program is formulated as a sequence of statements of the above form,
terminated by an optional END statement. All statements following the END are ignored by the
assembler.

3.3 Forming the Operand

To describe the operation codes and pseudo operations completely, it is necessary first to present
the form of the operand field, since it is used in nearly all statements. Expressions in the operand
field consist of simple operands, labels, constants, and reserved words, combined in properly
formed subexpressions by arithmetic and logical operators. The expression computation is
carried out by the assembler as the assembly proceeds. Each expression must produce a 16-bit
value during the assembly. Further, the number of significant digits in the result must not exceed
the intended use. If an expression is to be used in a byte move immediate instruction, the most
significant 8 bits of the expression must be zero. The restriction on the expression significance is
given with the individual instructions.

3.1 Introduction CP/M Operating System Manual

3-4

3.3.1 Labels

A label is an identifier that occurs on a particular statement. In general, the label is given a value
determined by the type of statement that it precedes. If the label occurs on a statement that
generates machine code or reserves memory space (for example, a MOV instruction or a DS
pseudo operation), the label is given the value of the program address that it labels. If the label
precedes an EQU or SET, the label is given the value that results from evaluating the operand
field. Except for the SET statement, an identifier can label only one statement.

When a label appears in the operand field, its value is substituted by the assembler. This value
can then be combined with other operands and operators to form the operand field for a particular
instruction.

3.3.2 Numeric Constants

A numeric constant is a 16-bit value in one of several bases. The base, called the radix of the
constant, is denoted by a trailing radix indicator. The following are radix indicators:

 B is a binary constant (base 2).
 O is a octal constant (base 8).
 Q is a octal constant (base 8).
 D is a decimal constant (base 10).
 H is a hexadecimal constant (base 16).

Q is an alternate radix indicator for octal numbers because the letter O is easily confused with the
digit 0. Any numeric constant that does not terminate with a radix indicator is a decimal constant.

A constant is composed as a sequence of digits, followed by an optional radix indicator, where
the digits are in the appropriate range for the radix. Binary constants must be composed of 0 and
1 digits, octal constants can contain digits in the range 0-7, while decimal constants contain
decimal digits. Hexadecimal constants contain decimal digits as well as hexadecimal digits
A(10D), B(11D), C(12D), D(13D), E(14D), and F(15D). Note that the leading digit of a
hexadecimal constant must be a decimal digit to avoid confusing a hexadecimal constant with an
identifier. A leading 0 will always suffice. A constant composed in this manner must evaluate to
a binary number that can be contained within a 16-bit counter, otherwise it is truncated on the
right by the assembler.

3.2 Program Format CP/M Operating System Manual

3-5

Similar to identifiers, embedded $ signs are allowed within constants to improve their
readability. Finally, the radix indicator is translated to upper-case if a lower-case letter is
encountered. The following are all valid instances of numeric constants:

 1234 1234D 1100B 1111$0000$1111$0000B
 1234H 0FFEH 3377O 33$77$22Q
 3377o 0fe3h 1234d 0ffffh

3.3.3 Reserved Words

There are several reserved character sequences that have predefined meanings in the operand
field of a statement. The names of 8080 registers are given below. When they are encountered,
they produce the values shown to the right.

 Table 3-1. Reserved Characters

 Character Value

 A 7
 B 0
 C 1
 D 2
 E 3
 H 4
 L 5
 M 6
 SP 6
 PSW 6

Again, lower-case names have the same values as their upper-case equivalents. Machine
instructions can also be used in the operand field; they evaluate to their internal codes. In the case
of instructions that require operands, where the specific operand becomes a part of the binary bit
pattern of the instruction, for example, MOV A,B, the value of the instruction, in this case MOV,
is the bit pattern of the instruction with zeros in the optional fields, for example, MOV produces
40H.

When the symbol $ occurs in the operand field, not embedded within identifiers and numeric
constants, its value becomes the address of the next instruction to generate, not including the
instruction contained within the current logical line.

3.3 Forming the Operand CP/M Operating System Manual

3-6

3.3.4 String Constants

String constants represent sequences of ASCII characters and are represented by enclosing the
characters within apostrophe symbols. All strings must be fully contained within the current
physical line (thus allowing exclamation point symbols within strings) and must not exceed 64
characters in length. The apostrophe character itself can be included within a string by
representing it as a double apostrophe (the two keystrokes"), which becomes a single apostrophe
when read by the assembler. In most cases, the string length is restricted to either one or two
characters (the DB pseudo operation is an exception), in which case the string becomes an 8- or
16-bit value, respectively. Two-character strings become a 16-bit constant, with the second
character as the low-order byte, and the first character as the high-order byte.

The value of a character is its corresponding ASCII code. There is no case translation within
strings; both upper- and lower-case characters can be represented. You should note that only
graphic printing ASCII characters are allowed within strings.

Valid strings: How assembler reads strings:

'A' 'AB' 'ab' 'c' A AB ab c
'' 'a''' '''' '''' a ' ' '
'Walla Walla Wash.' Walla Walla Wash
'She said "Hello" to me.' She said "Hello" to me.
'I said "Hello" to her.' I said "Hello" to her.

3.3.5 Arithmetic and Logical Operators

The operands described in Section 3.3 can be combined in normal algebraic notation using any
combination of properly formed operands, operators, and parenthesized expressions. The
operators recognized in the operand field are described in Table 3-2.

 Table 3-2. Arithmetic and Logical Operators

 Operators Meaning

 a + b unsigned arithmetic sum of a and b

 a - b unsigned arithmetic difference between a and b

 + b unary plus (produces b)

 - b unary minus (identical to 0 - b)

3.3 Forming the Operand CP/M Operating System Manual

3-7

Table 3-2. Arithmetic and Logical Operators (continued)

 a * b unsigned magnitude multiplication of a and b

 a / bunsigned magnitude division of a by b

 a MOD b remainder after a / b.

 NOT b logical inverse of b (all 0s become 1s, 1s become 0s), where b is considered a
16-bit value

 a AND b bit-by-bit logical and of a and b

 a OR b bit-by-bit logical or of a and b

 a XOR b bit-by-bit logical exclusive or of a and b

 a SHL b the value that results from shifting a to the lef by an amount b, with zero fill

 a SHR b the value that results from shifting a to the right by an amount b, with zero fill

In each case, a and b represent simple operands (labels, numeric constants, reserved words, and
one- or two-character strings) or fully enclosed parenthesized subexpressions, like those shown
in the following examples:

10+20 10h+37Q L1/3 (L2+4) SHR3

('a' and 5fh)+'O'('B'+B)OR(PSW+M)
(1+(2+c))shr(A-(B+1))

Note that all computations are performed at assembly time as 16-bit unsigned operations. Thus,
-1 is computed as 0 - 1, which results in the value 0ffffh (that is, all 1s). The resulting expression
must fit the operation code in which it is used. For example, if the expression is used in an ADI
(add immediate) instruction, the high-order 8 bits of the expression must be zero. As a result, the
operation ADI -1 produces an error message (-1 becomes 0ffffh, which cannot be represented as
an 8-bit value), while ADI (-1) AND 0FFH is accepted by the assembler because the AND
operation zeros the high-order bits of the expression.

3.3 Forming the Operand CP/M Operating System Manual

3-8

3.3.6 Precedence of Operators

As a convenience to the programmer, ASM assumes that operators have a relative precedence of
application that allows the programmer to write expressions without nested levels of parentheses.
The resulting expression has assumed parentheses that are defined by the relative precedence.
The order of application of operators in unparenthesized expressions is listed below. Operators
listed first have highest precedence (they are applied first in an unparenthesized expression),
while operators listed last have lowest precedence. Operators listed on the same line have equal
precedence, and are applied from left to right as they are encountered in an expression.

* / MOD SHL SHR
- +
NOT
AND
OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler as the fully
parenthesized expressions shown to the right.

 a*b+c (a*b) + c
 a+b*c a + (b*c)
 a MOD b*c SHL I ((a MOD b) * c) SHL d
 a OR b AND NOT c+d SHL e a OR (b AND (NOT (c + (d SHL e))))

Balanced, parenthesized subexpressions can always be used to override the assumed parentheses;
thus, the last expression above could be rewritten to force application of operators in a different
order, as shown:

(a OR b) AND (NOT c) + d SHL e

This results in these assumed parentheses:

(a OR b) AND ((NOT c) + (d SHL e))

3.3 Forming the Operand CP/M Operating System Manual

3-9

An unparenthesized expression is well-formed only if the expression that results from inserting
the assumed parentheses is well-formed.

3.4 Assembler Directives

Assembler directives are used to set labels to specific values during the assembly, perform
conditional assembly, define storage areas, and specify starting addresses in the program. Each
assembler directive is denoted by a pseudo operation that appears in the operation field of the
line. The acceptable pseudo operations are shown in Table 3-3.

 Table 3-3. Assembler Directives

 Directive Meaning
 ORG set the program or data origin

 END end program, optional start address

 EQU numeric equate

 SET numeric set

 IF begin conditional assembly

 ENDIF end of conditional assembly

 DB define data bytes

 DW define data words

 DS define data storage area

3.3 Forming the Operand CP/M Operating System Manual

3-10

3.4.1 The ORG Directive

The ORG statement takes the form:

label ORG expression

where label is an optional program identifier and expression is a 16-bit expression, consisting of
operands that are defined before the ORG statement. The assembler begins machine code
generation at the location specified in the expression. There can be any number of ORG
statements within a particular program, and there are no checks to ensure that the programmer is
not defining overlapping memory areas. Note that most programs written for the CP/M system
begin with an ORG statement of the form:

ORG 100H

which causes machine code generation to begin at the base of the CP/M transient program area. If
a label is specified in the ORG statement, the label is given the value of the expression. This
label can then be used in the operand field of other statements to represent this expression.

3.4.2 The END Directive

The END statement is optional in an assembly-language program, but if it is present it must be
the last statement. All subsequent statements are ignored in the assembly. The END statement
takes the following two forms:

label END

label END expression

where the label is again optional. If the first form is used, the assembly process stops, and the
default starting address of the program is taken as 0000. Otherwise, the expression is evaluated,
and becomes the program starting address. This starting address is included in the last record of
the Intel-formatted machine code hex file that results from the assembly. Thus, most CP/M
assembly-language programs end with the statement:

END 100H

resulting in the default starting address of 100H (beginning of the transient program area).

3.3 Forming the Operand CP/M Operating System Manual

3-11

3.4.3 The EQU Directive

The EQU (equate) statement is used to set up synonyms for particular numeric values. The EQU
statement takes the form:

label EQU expression

where the label must be present and must not label any other statement. The assembler evaluates
the expression and assigns this value to the identifier given in the label field. The identifier is
usually a name that describes the value in a more human-oriented manner. Further, this name is
used throughout the program to place parameters on certain functions. Suppose data received
from a teletype appears on a particular input port, and data is sent to the teletype through the next
output port in sequence. For example, you can use this series of equate statements to define these
ports for a particular hardware environment:

TTYBASE EQU 10H ;BASE PORT NUMBER FOR TTY
TTYIN EQU TTYBASE ;TTY DATA IN
TTYOUT EQU TTYBASE+1 ;TTY DATA OUT

At a later point in the program, the statements that access the teletype can appear as follows:

IN TTYIN ;READ TTY DATA TO REG-A

OUT TTYOUT ;WRITE DATA TO TTY FROM REG-A

making the program more readable than if the absolute I/O ports are used. Further, if the
hardware environment is redefined to start the teletype communications ports at 7FH instead of
10H, the first statement need only be changed to

TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other statements.

3.4 Assembler Directives CP/M Operating System Manual

3-12

3.4.4 The SET Directive

The SET statement is similar to the EQU, taking the form:

label SET expression

except that the label can occur on other SET statements within the program. The expression is
evaluated and becomes the current value associated with the label. Thus, the EQU statement
defines a label with a single value, while the SET statement defines a value that is valid from the
current SET statement to the point where the label occurs on the next SET statement. The use of
the SET is similar to the EQU statement, but is used most often in controlling conditional
assembly.

3.4.5 The IF and ENDIF Directives

The IF and ENDIF statements define a range of assembly-language statements that are to be
included or excluded during the assembly process. These statements take on the form:

IF expression

statement# 1

statement#2

 ...

statement#n

ENDIF

3.4 Assembler Directives CP/M Operating System Manual

3-13

When encountering the IF statement, the assembler evaluates the expression following the IF. All
operands in the expression must be defined ahead of the IF statement. If the expression evaluates
to a nonzero value, then statement#l through statement#n are assembled. If the expression
evaluates to zero, the statements are listed but not assembled. Conditional assembly is often used
to write a single generic program that includes a number of possible run-time environments, with
only a few specific portions of the program selected for any particular assembly. The following
program segments, for example, might be part of a program that communicates with either a
teletype or a CRT console (but not both) by selecting a particular value for TTY before the
assembly begins.

 TRUE EQU 0FFFFH ;DEFINE VALUE OF TRUE
 FALSE EQU NOT TRUE ;DEFINE VALUE OF FALSE
 ;
 TTY EQU TRUE ;TRUE IF TTY, FALSE IF CRT
 ;
 TTYBASE EQU 10H ;BASE OF TTY I/O PORTS
 CRTBASE EQU 20H ;BASE OF CRT I/O PORTS
 IF TTY ;ASSEMBLE RELATIVE TO
 ;TTYBASE
 CONIN EQU TTYBASE ;CONSOLE INPUT
 CONOUT EQU TTYBASE+1 ;CONSOLE OUTPUT
 ENDIF

 ; IF NOT TTY ;ASSEMBLE RELATIVE TO
 ;CRTBASE
 CONIN EQU CRTBASE ;CONSOLE INPUT
 CONOUT EQU CRTBASE+1 ;CONSOLE OUTPUT
 ENDIF

 ...

 IN CONIN ;READ CONSOLE DATA

 OUT CONTOUT ;WRITE CONSOLE DATA

In this case, the program assembles for an environment where a teletype is connected, based at
port 1 OH. The statement defining TTY can be changed to

 TTY EQU FALSE

and, in this case, the program assembles for a CRT based at port 20H.

3.4 Assembler Directives CP/M Operating System Manual

3-14

3.4.6 The DB Directive

The DB directive allows the programmer to define initialized storage areas in singleprecision
byte format. The DB statement takes the form:

label DB e#1, e#2, ... , e#n

where e#1 through e#n are either expressions that evaluate to 8-bit values (the highorder bit must
be zero) or are ASCII strings of length no greater than 64 characters. There is no practical
restriction on the number of expressions included on a single source line. The expressions are
evaluated and placed sequentially into the machine code file following the last program address
generated by the assembler. String characters are similarly placed into memory starting with the
first character and ending with the last character. Strings of length greater than two characters
cannot be used as operands in more complicated expressions.

Note:ASCII characters are always placed in memory with the parity bit reset (0). Also, there is
no translation from lower- to upper-case within strings. The optional label can be used to
reference the data area throughout the remainder of the program. The following are examples of
valid DB statements:

data: DB 0,1,2,3,4,5
 DB data and 0ffh,5,377Q,1+2+3+4

sign-on: DB 'please type your name',CR,LF,0
 DB 'AB' SHR 8,'C','DE',AND 7FH

3.4.7 The DW Directive

The DW statement is similar to the DB statement except double-precision two-byte words of
storage are initialized. The DW statement takes the form:

label DW e#1, e#2, ..., e#n

where e#1 through e#n are expressions that evaluate to 16-bit results. Note that ASCII strings of
one or two characters are allowed, but strings longer than two characters are disallowed. In all
cases, the data storage is consistent with the 8080 processor; the least significant byte of the
expression is stored first in memory, followed by the most significant byte. The following are
examples of DW statements:

doub: DW 0ffefh,doub+4,signon-$,255+255
 DW 'a',5,'ab','CD',6 shl 8 or llb.

3.4 Assembler Directives CP/M Operating System Manual

3-15

3.4.8 The DS Directive

The DS statement is used to reserve an area of uninitialized memory, and takes the form:

label DS expression

where the label is optional. The assembler begins subsequent code generation after the area
reserved by the DS. Thus, the DS statement given above has exactly the same effect as the
following statement:

label: EQU $;LABEL VALUE IS CURRENT CODE LOCATION
 ORG $+expression ;MOVE PAST RESERVED AREA

3.5 Operation Codes

Assembly-language operation codes form the principal part of assembly-language programs and
form the operation field of the instruction. In general, ASM accepts all the standard mnemonics
for the Intel 8080 microcomputer, which are given in detail in the Intel 8080 Assembly Language
Programming Manual. Labels are optional on each input line. The individual operators are listed
briefly in the following sections for completeness, although the Intel manuals should be
referenced for exact operator details. In Tables 3-4 through 3-8, bit values have the following
meaning:

 -e3 represents a 3-bit value in the range 0-7 that can be one of the predefined registers A, B,
C, D, E, H, L, M, SP, or PSW.

 -e8 represents an 8-bit value in the range 0-255.

 -e16 represents a 16-bit value in the range 0-65535.

These expressions can be formed from an arbitrary combination of operands and operators. In
some cases, the operands are restricted to particular values within the allowable range, such as
the PUSH instruction. These cases are noted as they are encountered.

In the sections that follow, each operation code is listed in its most general form, along with a
specific example, a short explanation, and special restrictions.

3.4 Assembler Directives CP/M Operating System Manual

3-16

3.5.1 Jumps, Calls, and Returns

The Jump, Call, and Return instructions allow several different forms that test the condition flags
set in the 8080 microcomputer CPU. The forms are shown in Table 3-4.

Table 3-4. Jumps, Calls, and Returns

 Bit
 Form Value Example Meaning

 JMP e16 JMP LI jump unconditionally to label

 JNZ e16 JNZ L2 jump on nonzero condition to label

 JZ e16 JZ 100H Jump on zero condition to label

 JNC e16 JNC L1+4 jump no carry to label

 JC e16 JC L3 Jump on carry to label

 JPO e16 JPO $+8 Jump on parity odd to label

 JPE e16 JPE L4 Jump on even parity to label

 JP e16 JP GAMMA Jump on positive result to label

 JM e16 JM A1 Jump on minus to label

 CALL e16 CALL S1 Call subroutine unconditionally

 CNZ e16 CNZ S2 Call subroutine on nonzero condition

 CZ e16 CZ 100H Call subroutine on zero condition

 CNC e16 CNC SI+4 Call subroutine if no carry set

 CC e16 CC S3 Call subroutine if carry set

 CPO e16 CPO $+8 Call subroutine if parity odd

3.4 Assembler Directives CP/M Operating System Manual

3-17

Table 3-4. Jumps, Calls, and Returns (continued)

 Bit
 Form Value Example Meaning

 CPE e16 CPE $4 Call subroutine if parity even

 CP e16 CP GAMMA Call subroutine if positive result

 CM e16 CM b1$c2 Call subroutine if minus flag

 RST e3 RST 0 Programmed restart, equivalent to CALL 8*e3, except one byte
call

 RET Return from subroutine

 RNZ Return if nonzero flag set

 RZ Return if zero flag set

 RNC Return if no carry

 RC Return if carry flag set

 RPO Return if parity is odd

 RPE Return if parity is even

 RP Return if positive result

 RM Return if minus flag is set

3.5 Operation Codes CP/M Operating System Manual

3-18

3.5.2 Immediate Operand Instructions

Several instructions are available that load single- or double-precision registers or
single-precision memory cells with constant values, along with instructions that perform
immediate arithmetic or logical operations on the accumulator (register A). Table 3-5 describes
the immediate operand instructions.

 Table 3-5. Immediate Operand Instructions

 Form with
 Bit Values Example Meaning

 MVI e3,e8 MVI B,255 Move immediate data to register A, B, C, D, E, H, L,
or M (memory)

 ADI e8 ADI 1 Add immediate operand to A without carry

 ACI e8 ACI 0FFH Add immediate operand to A with carry

 SUI e8 SUI L + 3 Subtract from A without borrow (carry)

 SBI e8 SBI L AND 11B Subtract from A with borrow (carry)

 ANI e8 ANI $ AND 7FH Logical and A with immediate data

 XRI e8 XRI 1111$0000B Exclusive or A with immediate data

 ORI e8 ORI L AND 1+1 Logical or A with immediate data

 CPI e8 CPI 'a' Compare A with immediate data, same as SUI except
register A not changed.

 LXI e3,e16 LXI B, 100H Load extended immediate to register pair. e3 must be
equivalent to B, D, H,or SP.

3.5 Operation Codes CP/M Operating System Manual

3-19

3.5.3 Increment and Decrement Instructions

The 8080 provides instructions for incrementing or decrementing single- and double precision
registers. The instructions are described in Table 3-6.

 Table 3-6. Increment and Decrement Instructions

 Form with
 Bit Value Example Meaning

 INR e3 INR E Single-precision increment register. e3 produces one of A,
B, C, D, E, H, L, M.

 DCR e3 DCR A Single-precision decrement register. e3 produces one of A,
B, C, D, E, H, L, M.

 INX e3 INX SP Double-precision increment register pair. e3 must be to B,
D, H, or SP.

 DCX e3 DCX B Double-precision decrement register pair. e3 must be
equivalent to B, D, H, or SP.

3.5 Operation Codes CP/M Operating System Manual

3-20

3.5.4 Data Movement Instructions

Instructions that move data from memory to the CPU and from CPU to memory are given in the
following table.

Table 3-7. Data Movement Instructions

 Form with
 Bit Value Example Meaning

 MOV e3,e3 MOV A,B Move data to leftmost element from rightmost
element. e3 produces one of A, B, C, D, E, H, L, or M.
MOV M,M is disallowed.

 LDAX e3 LDAX B Load register A from computed address. e3 must produce
either B or D.

 STAX e3 STAX D Store register A to computed address. e3 must produce
either B or D.

 LHLD e16 LHLD L1 Load HL direct from location e16. Double-precision load to
H and L.

 SHLD e16 SHLD L5+x Store HL direct to location e16. Double-precision store
from H and L to memory.

 LDA e16 LDA Gamma Load register A from address e16.

 STA e16 STA X3-5 Store register A into memory at e16.

 POP e3 POP PSW Load register pair from stack, set SP. e3 must produce one
of B, D, H, or PSW.

 PUSH e3 PUSH B Store register pair into stack, set SP. e3 must produce on of
B, D, H, or PSW.

3.5 Operation Codes CP/M Operating System Manual

3-21

Table 3-7. (continued)

 Form with
 Bit Value Example Meaning

 IN e8 IN 0 Load register A with data from port e8.

 OUT e8 OUT 255 Send data from register A to port e8.

 XTHL Exchange data from top of stack with HL.

 PCHL Fill program counter with data from HL.

 SPHL Fill stack pointer with data from HL.

 XCHG Exchange DE pair with HL pair.

3.5.5 Arithmetic Logic Unit Operations

Instructions that act upon the single-precision accumulator to perform arithmetic and logic
operations are given in the following table.

Table 3-8. Arithmetic Logic Unit Operations

 Form with
 Bit Value Example Meaning

 ADD e3 ADD B Add register given by e3 to accumulator without carry. e3 must
produce one of A, B, C, D, E, H, or L.

 ADC e3 ADC L Add register to A with carry, e3 as above.

 SUB e3 SUB H Subtract reg e3 from A without carry, e3 is defined as above.

 SBB e3 SBB 2 Subtract register e3 from A with carry, e3 defined as above.

3.5 Operation Codes CP/M Operating System Manual

3-22

Table 3-8. (continued)

 Form with
 Bit Value Example Meaning

 ANA e3 ANA 1+1 Logical and reg with A, e3 as above.

 XRA e3 XRA A Exclusive or with A, e3 as above.

 ORA e3 ORA B Logical or with A, e3 defined as above.

 CMP e3 CMP H Compare register with A, e3 as above.

 DAA Decimal adjust register A based upon last arithmetic logic
unit operation.

 CMA Complement the bits in register A.

 STC Set the carry flag to 1.

 CMC Complement the carry flag.

 RLC Rotate bits left, (re)set carry as a side effect. High-order A
bit becomes carry.

 RRC Rotate bits right, (re)set carry as side effect. Low-order A
bit becomes carry.

 RAL Rotate carry/A register to left. Carry is involved in the
rotate.

 RAR Rotate carry/A register to right. Carry is involved in the
rotate.

 DAD e3 DAD B Double-precision add register pair e3 to HL. e3 must
produce B, D, H, or SP.

3.5 Operation Codes CP/M Operating System Manual

3-23

3.5.6 Control Instructions

The four remaining instructions, categorized as control instructions, are the following:

 -HLT halts the 8080 processor.
 -DI disables the interrupt system.
 -EI enables the interrupt system.
 -NOP means no operation.

3.6 Error Messages

When errors occur within the assembly-language program, they are listed as singlecharacter flags
in the leftmost position of the source listing. The line in error is also echoed at the console so that
the source listing need not be examined to determine if errors are present. The error codes are
listed in the following table.

Table 3-9. Error Codes

 Error Code Meaning

 D Data error: element in data statement cannot be placed in the specified data area.

 E Expression error: expression is ill-formed and cannot be computed at assembly time.

 L Label error: label cannot appear in this context; might be duplicate label.

 N Not implemented: features that will appear in future ASM versions. For example, macros
are recognized, but flagged in this version.

 O Overflow: expression is too complicated (too many pending operators) to be computed
and should be simplified.

 P Phase error: label does not have the same value on two subsequent passes through the

program.

3.5 Operation Codes CP/M Operating System Manual

3-24

Table 3-9. (continued)

 Error Code Meaning

 R Register error: the value specified as a register is not compatible with the operation code.

 S Syntax error: statement is not properly formed.

 Y Value error: operand encountered in expression is improperly formed.

Table 3-10 lists the error messages that are due to terminal error conditions.

 Table 3-10. Error Messages

 Message Meaning

 NO SOURCE FILE PRESENT

The file specified in the ASM command does not exist on disk.

 NO DIRECTORY SPACE

The disk directory is full; erase files that are not needed and retry.

 SOURCE FILE NAME ERROR

Improperly formed ASM filename, for example, It is specified with ? field s.

 SOURCE FILE READ ERROR

Source file cannot be read properly by the assembler; execute a TYPE to determine the
point of error.

 OUTPUT FILE WRITE ERROR

Output files cannot be written properly; most likely cause is a full disk, erase and retry.

 CANNOT CLOSE FILE

Output file cannot be closed; check to see if disk is write protected.

3.5 Operation Codes CP/M Operating System Manual

3-25

3.7 A Sample Session

The following sample session shows interaction with the assembler and debugger in the
development of a simple assembly-language program. The arrow represents a carriage return
keystroke.

A>ASM SORT Assemble SORT.ASM

CP/M ASSEMBLER - VER 1.0

0015C Next free address
003H USE FACTOR Percent of table used 00 to ff (hexadecimal)
END OF ASSEMBLY

A>DIR SORT.*

SORT ASM Source file
SORT BAK Back-up from last edit
SORT PRN Print file (contains tab characters)
SORT HEX Machine code file

A>TYPE SORT.PRN

 ; SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE START AT
 ; THE BEGINNING OF THE TRANSIENT PROGRAM AREA

0100 ORG 100H

0100 214601 SORT: LXI H,SW ;ADDRESS SWITCH TOGGLE
0103 3601 MVI M,1 ;SET TO 1 FOR FIRST ITERATION
0105 214701 LXI H,I ;ADDRESS INDEX
0108 3600 MVI M,0 ;I=0
 ;
 ; COMPARE I WITH ARRAY SIZE
010A 7E COMPL: MOV A,M ;A REGISTER = I
0105 FE09 CPI N-1 ;CY SET IF I<(N-1)
010D FE09 JNC CONT ;CONTINUE IF I<=(N-2)
 ;
 ; END OF ONE PASS THROUGH DATA

3.6 Error Messages CP/M Operating System Manual

3-26

0110 214601 LXI H,SW ;CHECK FOR ZERO SWITCHES
0113 7EB7C2000001 MOV A,M! OR A! JNZ SORT ; END OF SORT IF SW=0
 ;
0118 FF RST 7 ;GO TO DEBUGGER INSTEAD OF REB
 ;
 ; CONTINUE THIS PASS
 ; ADDRESSING I, SO LOAD AV(I) INTO REGISTERS
0119
 5F16002148CONT: MOV E,A! MVI D,0! LXU H,AV! DAD D! DAD D
0121 4E792346 MOV C,M! MOV A,C! INX H! MOV B,M
 ; LOW ORDER BYTE IN A AND C, HIGH ORDER BYTE IN B
 ;
 ; MOV H AND L TO ADDRESS AV(I+1)
0125 23 INX H
 ;
 ; COMPARE VALUE WITH REGS CONTAINING AV (I)
0126 965778239E SUB M! MOV D,A! MOV A,B! INX H! SBB M ; SUBTRACT
 ;
 ; CHECK FOR EQUAL VALUES
012E B2CA3F01 OR D! JZ INCI ; SKIP IF AV(I) - AV(I+1)
0132 56702B5E MOD D,M! MOV M,B! DCX H! MOV E,M
0136 712B722B73 MOVM,C! DCX H! MOV M,D! DCX H! MOV M,E
 ;
 ; INCERMENT I
013F 21470134C3INCI: LXI H,I!INR M! JMP COMP
 ;
 ; DATA DEFINITION SECTION
0146 00 SW: DB 0 ; RESERVE SPACE FOR SWITCH COUNT
0147 I: DS 1 ; SPACE FOR INDEX
0148 050064001EAV: DW 5, 100, 30, 50, 20, 7, 1000, 300, 100, -32767
000A = N EQU ($-AV)/2 ; COMPUTE N INSTEAD OF PRE
015C END

A>TYPE SORT.HEX

3.7 A Sample Session CP/M Operating System Manual

3-27

:10010000214601360121470136007EFE09D2190140
:100110002146017EB7C20001FF5F16002148011988
:10012000194E79234623965778239EDA3F01B2CAA7
:100130003F0156702B5E712B722B732146013421C7
:070014000470134C3A01006E
:10014800050064001E00320014000700E8032C01BB
:0401580064000180BE
:0000000000000

A>DDT SORT.HEX Start debug run

16k DDT VER 1.0
NEXT PC
015C 0000 Default address (no address on END statement)
-XP

P=0000 100 Change PC to 100

-UFFFF Untrace for 65535 steps
 Abort with rubout
C0Z0M0E0I0 A=00 B=0000 D=0000 H=0000 S=0100 P=100 LXI H,0146*0100
-T10 Trace 10H steps

C0Z0M0E0I0 A=01 B=0000 D=0000 H=0146 S=0100 P=100 LXI H, 0146
C0Z0M0E0I0 A=01 B=0000 D=0000 H=0146 S=0100 P=103 MVI M,1
C0Z0M0E0I0 A=01 B=0000 D=0000 H=0146 S=0100 P=105 LXI H, 0147
C0Z0M0E0I0 A=01 B=0000 D=0000 H=0147 S=0100 P=108 MVI M, 00
C0Z0M0E0I0 A=01 B=0000 D=0000 H=0147 S=0100 P=10A MOV A, M
C0Z0M0E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=10B CPI 09
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=10D JNC 0119
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=110 LXI H, 146
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0146 S=0100 P=113 MOV A, M
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0146 S=0100 P=114 ORA A
C0Z0M0E0I0 A=00 B=0000 D=0000 H=0146 S=0100 P=115 JNZ 0100
C0Z0M0E0I0 A=00 B=0000 D=0000 H=0146 S=0100 P=100 LXI H, 146
C0Z0M0E0I0 A=00 B=0000 D=0000 H=0146 S=0100 P=103 MVI M, 01
C0Z0M0E0I0 A=00 B=0000 D=0000 H=0146 S=0100 P=104 LXI H, 0147
C0Z0M0E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=107 MVI M, 00
C0Z0M0E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=10A MOV A, M*010B
 Stopped at 10BH
-A10D

3.7 A Sample Session CP/M Operating System Manual

3-28

010D JC 119 Change to jump on carry
0110

-xp

P=010B 100 Reset program counter back to beginning of
 program

-T10 Trace execution for 10H steps

C0Z0M0E0I0 A=01 B=0000 D=0000 H=0147 S=0100 P=100 LXI H, 0146
C0Z0M0E0I0 A=01 B=0000 D=0000 H=0146 S=0100 P=103 MVI M,1
C0Z0M0E0I0 A=01 B=0000 D=0000 H=0146 S=0100 P=105 LXI H, 0147
C0Z0M0E0I0 A=01 B=0000 D=0000 H=0147 S=0100 P=108 MVI M, 00
C0Z0M0E0I0 A=01 B=0000 D=0000 H=0147 S=0100 P=10A MOV A, M
C0Z0M0E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=10B CPI 09
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=10D JC 0119
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=119 MOV E, A
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0146 S=0100 P=11A MVI D, 00
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0146 S=0100 P=11C LXI H, 0148
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0148 S=0100 P=11F DAD D
C0Z0M1E0I0 A=00 B=0000 D=0000 H=0148 S=0100 P=120 DAD D
C0Z0M1E0I0 A=00 B=0000 D=0000 H=0148 S=0100 P=121 MOV C,M
C0Z0M1E0I0 A=00 B=0005 D=0000 H=0148 S=0100 P=122 MOV A,C
C0Z0M1E0I0 A=05 B=0005 D=0000 H=0148 S=0100 P=123 INX H
C0Z0M1E0I0 A=05 B=0005 D=0000 H=0149 S=0100 P=124 MOV B,M*0125
-L100

0100 LXI H,0146 List some code from 100H
0103 MVI M,01
0105 LXI H,0147
0108 MVI M,00
010A MOV A,M
010B CPI 09
010D JC 0119
0110 LXI H,0146
0113 MOV A,M
0114 ORA A
0115 JNZ 0100
-L

3.7 A Sample Session CP/M Operating System Manual

3-29

0118 RST 07 List more
0119 MOV E,A
011A MVI D,00
011C LXI H,0148
 Abort list with rubout
-G,11B Start program from current PC (0125H) and run in real
 time to 11BH

*0127 Stopped with an external interrupt 7 from front panel
-T4 (program was looping indefinitely)
 Look at looping program in trace mode,

C0Z0M0E0I0 A=38 B=0064 D=0006 H=0156 S=0100 P=127 MOV D,A
C0Z0M0E0I0 A=38 B=0064 D=3806 H=0156 S=0100 P=128 MOV A,B
C0Z0M0E0I0 A=00 B=0064 D=3806 H=0156 S=0100 P=129 INX H
C0Z0M0E0I0 A=00 B=0064 D=3806 H=0157 S=0100 P=12A SBB M*012B
-D148

0148 05 00 07 00 14 00 1E 00 Data are sorted but program does not stop
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 002.D.D..,......

0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

-G0 Return to CP/M

A>DDT SORT.HEX Reload the memory image

16k DDT VER 1.0
NEXT PC
015C 0000
-XP

P=0000 100 Set PC to beginning of program

-L10D

010D JNC 0119
0110 LXI H,0146
-Abort list with rubout
-A10D Assemble new opcode

3.7 A Sample Session CP/M Operating System Manual

3-30

010D JC 119
0110

-L100 List starting section of program

0100 LXI H,0146
0103 MVI M,01
0105 LXI H,0147
0108 MVI M,00
-Abort list with rubout
-a103 Change switch initialization to 00

0103 MVI M,0

105

-^C Return to CP/M with CTRL-C (G0 works as well)

SAVE 1 SORT.COM Save 1 page (256 pytes, from 100H to 1ffH)
 on disk in case there is need to reload later
A>DDT SORT.COM Restart DDT with saved memory image

16K DDT VER 1.0
NEXT PC
0200 0100 COM file always starts with address 100H
-G Run the program from PC=100H

*0118 Program stop (RST 7) encountered
-D148

0148 05 00 07 00 14 00 1E 00 Data propeerly sorted
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00
2.D.D..,......

0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

-G0 Return to CP/M

3.7 A Sample Session CP/M Operating System Manual

3-31

a>ED SORT.ASM Make changes to original program
 (the caret,^, indicates a control character)

*N,0^ZOTT Find next ,0
 MVI M,0 ;I = 0

*- Up one line in text
 LXI H,I ;ADDRESS INDEX

*- Up another line
 MVI M, 1 ;SET TO 1 FOR FIRST ITERATION

*KT Kill line and type next line
 LXI H,I ;ADDRESS INDEX

*I Insert new line
 MVI M,0 ;ADDRESS INDEX

*NJNC^Z0T
 JNC*T
 CONT ;CONTINUE IF I <=(N-2)

*-2DIC^Z0LT
 JC CONT ;CONTINUE IF I <= (N-2)

*E

A>ASM SORT.AAZ Source = A, HEX to disk A, Skip PRN

CP/M ASSEMBLER - VER 1.0

015C Next adress to assemble
0003H USE FACTOR
END OF ASSEMBLY

3.7 A Sample Session CP/M Operating System Manual

3-32

A>DDT SORT.HEX Test program changes

16K DDT VER 1.0
NEXT PC
015C 0000
-G100

*0118

-D148

 Data sorted
0148 05 00 07 00 14 00 1E 00
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00
2.D.D..,......
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

End of Section 3

3.7 A Sample Session CP/M Operating System Manual

3-33

Section 4
CP/M Dynamic Debugging Tool

4.1 Introduction

The DDT program allows dynamic interactive testing and debugging of programs generated in
the CP/M environment. Invoke the debugger with a command of one of the following forms:

DDT
DDT filename.HEX
DDT filename.COM

where filename is the name of the program to be loaded and tested. In both cases, the DDT
program is brought into main memory in place of the Console Command Processor (CCP) and
resides directly below the Basic Disk Operating System (BDOS) portion of CP/M. Refer to
Section 5 for standard memory organization. The BDOS starting address, located in the address
field of the JMP instruction at location 5H, is altered to reflect the reduced Transient Program
Area (TPA) size.

The second and third forms of the DDT command perform the same actions as the first, except
there is a subsequent automatic load of the specified HEX or COM file. The action is identical to
the following sequence of commands:

DDT
Ifilename.HEX or Ifilename.COM
R

where the I and R commands set up and read the specified program to test. See the explanation of
the I and R commands below for exact details.

Upon initiation, DDT prints a sign-on message in the form:

DDT VER m.m

where m.m is the revision number.

3.7 A Sample Session CP/M Operating System Manual

4-1

Following the sign-on message, DDT prompts you with the hyphen character, -, and waits for
input commands from the console. You can type any of several singlecharacter commands,
followed by a carriage return to execute the command. Each line of input can be line-edited using
the following standard CP/M controls:

Table 4-1. Line-editing Controls

 Control Result

 rubout removes the last character typed

 CTRL-U removes the entire line, ready for retyping

 CTRL-C reboots system

Any command can be up to 32 characters in length. An automatic carriage return is inserted as
character 33, where the first character determines the command type. Table 4-2 describes DDT
commands.

Table 4-2. DDT Commands

 Command
 Character Result

 A enters assembly-language mnemonics with operands.

 D displays memory in hexadecimal and ASCII.

 F fills memory with constant data.

 G begins execution with optional breakpoints.

 I sets up a standard input File Control Block.

 L lists memory using assembler mnemonics.

 M moves a memory segment from source to destination.

 R reads a program for subsequent testing.

4-2

Table 4-2. (continued)

 Command
 Character Result

 A enters assembly-language mnemonics with operands.
 S substitutes memory values.

 T traces program execution.

 U untraced program monitoring.

 X examines and optionally alters the CPU state.

The command character, in some cases, is followed by zero, one, two, or three hexadecimal
values, which are separated by commas or single blank characters. All DDT numeric output is in
hexadecimal form. The commands are not executed until the carriage return is typed at the end of
the command.

At any point in the debug run, you can stop execution of DDT by using either a CTRL-C or G0
(jump to location 0000H) and save the current memory image by using a SAVE command of the
form:

SAVE n filename. COM

where n is the number of pages (256 byte blocks) to be saved on disk. The number of blocks is
determined by taking the high-order byte of the address in the TPA and converting this number to
decimal. For example, if the highest address in the TPA is 134H, the number of pages is 12H or
18 in decimal. You could type a CTRL-C during the debug run, returning to the CCP level,
followed by

SAVE 18 X. COM

The memory image is saved as X.COM on the disk and can be directly executed by typing the
name X. If further testing is required, the memory image can be recalled by typing

DDT X.COM

which reloads the previously saved program from location 100H through page 18, 23FFH. The
CPU state is not a part of the COM file; thus, the program must be restarted from the beginning
to test it properly.

4.1 Introduction CP/M Operating System Manual

4-3

4.2 DDT Commands

The individual commands are detailed below. In each case, the operator must wait for the hyphen
prompt character before entering the command. If control is passed to a program under test, and
the program has not reached a breakpoint, control can be returned to DDT by executing a RST 7
from the front panel. In the explanation of each command, the command letter is shown in some
cases with numbers separated by commas, the numbers are represented by lower-case letters.
These numbers are always assumed to be in a hexadecimal radix and from one to four digits in
length. Longer numbers are automatically truncated on the right.

Many of the commands operate upon a CPU state that corresponds to the program under test. The
CPU state holds the registers of the program being debugged and initially contains zeros for all
registers and flags except for the program counter, P, and stack pointer, S, which default to 100H.
The program counter is subsequently set to the starting address given in the last record of a HEX
file if a file of this form is loaded, see the I and R commands.

4.2.1 The A (Assembly) Command

DDT allows in-line assembly language to be inserted into the current memory image using the A
command, which takes the form:

As

where s is the hexadecimal starting address for the in-line assembly. DDT prompts the console
with the address of the next instruction to fill and reads the console, looking for
assembly-language mnemonics followed by register references and operands in absolute
hexadecimal form. See the Intel 8080 Assembly Language Reference Card for a list of
mnemonics. Each successive load address is printed before reading the console. The A
command terminates when the first empty line is input from the console.

Upon completion of assembly language input, you can review the memory segment using the
DDT disassembler (see the L command).

Note that the assembler/disassembler portion of DDT can be overlaid by the transient program
being tested, in which case the DDT program responds with an error condition when the A and L
commands are used.

4.1 Introduction CP/M Operating System Manual

4-4

4.2.2 The D (Display) Command

The D command allows you to view the contents of memory in hexadecimal and ASCII formats.
The D command takes the forms:

D
Ds
Ds,f

In the first form, memory is displayed from the current display address, initially 100H, and
continues for 16 display lines. Each display line takes the followng form:

 aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccccccccccccccc

where aaaa is the display address in hexadecimal and bb represents data present in memory
starting at aaaa. The ASCII characters starting at aaaa are to the right (represented by the
sequence of character c) where nongraphic characters are printed as a period. You should note
that both upper- and lower-case alphabetics are displayed, and will appear as upper-case symbols
on a console device that supports only upper-case. Each display line gives the values of 16 bytes
of data, with the first line truncated so that the next line begins at an address that is a multiple of
16.

The second form of the D command is similar to the first, except that the display address is first
set to address s.

The third form causes the display to continue from address s through address f. In all cases, the
display address is set to the first address not displayed in this command, so that a continuing
display can be accomplished by issuing successive D commands with no explicit addresses.

Excessively long displays can be aborted by pressing the return key.

4.2.3 The F (Fill) Command

The F command takes the form:

Fs,f,c

where s is the starting address, f is the final address, and c is a hexadecimal byte constant. DDT
stores the constant c at address s, increments the value of s and test against f. If s exceeds f, the
operation terminates, otherwise the operation is repeated. Thus, the fill command can be used to
set a memory block to a specific constant value.

4.2 DDT Commands CP/M Operating System Manual

4-5

4.2.4 The G (Go) Command

A program is executed using the G command, with up to two optional breakpoint addresses. The
G command takes the forms:

G
Gs
Gs,b
Gs,b,c
G,b
G,b,c

The first form executes the program at the current value of the program counter in the current
machine state, with no breakpoints set. The only way to regain control in DDT is through a RST
7 execution. The current program counter can be viewed by typing an X or XP command.

The second form is similar to the first, except that the program counter in the current machine
state is set to address s before execution begins.

The third form is the same as the second, except that program execution stops when address b is
encountered (b must be in the area of the program under test). The instruction at location b is not
executed when the breakpoint is encountered.

The fourth form is identical to the third, except that two breakpoints are specified, one at b and
the other at c. Encountering either breakpoint causes execution to stop and both breakpoints are
cleared. The last two forms take the program counter from the current machine state and set one
and two breakpoints, respectively.

Execution continues from the starting address in real-time to the next breakpoint. There is no
intervention between the starting address and the break address by DDT. If the program under
test does not reach a breakpoint, control cannot return to DDT without executing a RST 7
instruction. Upon encountering a breakpoint, DDT stops execution and types

*d

4.2 DDT Commands CP/M Operating System Manual

4-6

where d is the stop address. The machine state can be examined at this point using the X
(Examine) command. You must specify breakpoints that differ from the program counter address
at the beginning of the G command. Thus, if the current program counter is 1234H, then the
following commands:

G,1234
G400,400

both produce an immediate breakpoint without executing any instructions.

4.2.5 The I (Input) Command

The I command allows you to insert a filename into the default File Control Block (FCB) at
5CH. The FCB created by CP/M for transient programs is placed at this location (see Section 5).
The default FCB can be used by the program under test as if it had been passed by the CP/M
Console Processor. Note that this filename is also used by DDT for reading additional HEX and
COM files. The I command takes the forms:

Ifilename
Ifilename.typ

If the second form is used and the filetype is either HEX or COM, subsequent R commands can
be used to read the pure binary or hex format machine code. Section 4.2.8 gives further details.

4.2.6 The L (List) Command

The L command is used to list assembly-language mnemonics in a particular program region.
The L command takes the forms:

L
Ls
Ls,f

The first form lists twelve lines of disassembled machine code from the current list address. The
second form sets the list address to s and then lists twelve lines of code. The last form lists
disassembled code from s through address f. In all three cases, the list address is set to the next
unlisted location in preparation for a subsequent L command. Upon encountering an execution
breakpoint, the list address is set to the current value of the program counter (G and T
commands). Again, long typeouts can be aborted by pressing RETURN during the list process.

4.2 DDT Commands CP/M Operating System Manual

4-7

4.2.7 The M (Move) Command

The M command allows block movement of program or data areas from one location to another
in memory. The M command takes the form:

Ms,f,d

where s is the start address of the move, f is the final address, and d is the destination address.
Data is first removed from s to d, and both addresses are incremented. If s exceeds f, the move
operation stops; otherwise, the move operation is repeated.

4.2.8 The R (Read) Command

The R command is used in conjunction with the I command to read COM and HEX files from
the disk into the transient program area in preparation for the debug run. The R command takes
the forms:

R
Rb

where b is an optional bias address that is added to each program or data address as It is loaded.
The load operation must not overwrite any of the system parameters from 000H through 0FFH
(that is, the first page of memory). If b is omitted, then b = 0000 is assumed. The R command
requires a previous I command, specifying the name of a HEX or COM file. The load address
for each record is obtained from each individual HEX record, while an assumed load address of
100H is used for COM files. Note that any number of R commands can be issued following the I
command to reread the program under test, assuming the tested program does not destroy the
default area at 5CH. Any file specified with the filetype COM is assumed to contain machine
code in pure binary form (created with the LOAD or SAVE command), and all others are
assumed to contain machine code in Intel hex format (produced, for example, with the ASM
command).

Recall that the command,

DDT filename.typ

which initiates the DDT program, equals to the following commands:

DDT
- Ifilename.typ
- R

4.2 DDT Commands CP/M Operating System Manual

4-8

Whenever the R command is issued, DDT responds with either the error indicator ? (file cannot
be opened, or a checksum error occurred in a HEX file) or with a load message. The load
message takes the form:

NEXT PC
nnnn pppp

where nnnn is the next address following the loaded program and pppp is the assumed program
counter (100H for COM files, or taken from the last record if a HEX file is specified).

4.2.9 The S (Set) Command

The S command allows memory locations to be examined and optionally altered. The S
command takes the form:

Ss

where s is the hexadecimal starting address for examination and alteration of memory. DDT
responds with a numeric prompt, giving the memory location, along with the data currently held
in memory. If you type a carriage return, the data is not altered. If a byte value is typed, the value
is stored at the prompted address. In either case, DDT continues to prompt with successive
addresses and values until you type either a period or an invalid input value is detected.

4.2.10 The T (Trace) Command

The T command allows selective tracing of program execution for 1 to 65535 program steps. The
T command takes the forms:

T
Tn

In the first form, the CPU state is displayed and the next program step is executed. The program
terminates immediately, with the termination address displayed as

*hhhh

where hhhh is the next address to execute. The display address (used in the D command) is set to
the value of H and L, and the list address (used in the L command) is set to hhhh. The CPU state
at program termination can then be examined using the X command.

4.2 DDT Commands CP/M Operating System Manual

4-9

The second form of the T command is similar to the first, except that execution is traced for n
steps (n is a hexadecimal value) before a program breakpoint occurs. A breakpoint can be forced
in the trace mode by typing a rubout character. The CPU state is displayed before each program
step is taken in trace mode. The format of the display is the same as described in the X command.

You should note that program tracing is discontinued at the CP/M interface and resumes after
return from CP/M to the program under test. Thus, CP/M functions that access I/O devices, such
as the disk drive, run in real-time, avoiding I/O timing problems. Programs running in trace mode
execute approximately 500 times slower than real-time because DDT gets control after each user
instruction is executed. Interrupt processing routines can be traced, but commands that use the
breakpoint facility (G, T, and U) accomplish the break using an RST 7 instruction, which means
that the tested program cannot use this interrupt location. Further, the trace mode always runs the
tested program with interrupts enabled, which may cause problems if asynchronous interrupts are
received during tracing.

To get control back to DDT during trace, press RETURN rather than executing an RST 7. This
ensures that the trace for current instruction is completed before interruption.

4.2.11 The U (Untrace) Command

The U command is identical to the T command, except that intermediate program steps are not
displayed. The untrace mode allows from 1 to 65535 (0FFFFH) steps to be executed in
monitored mode and is used principally to retain control of an executing program while it reaches
steady state conditions. All conditions of the T command apply to the U command.

4.2.12 The X (Examine) Command

The X command allows selective display and alteration of the current CPU state for the program
under test. The X command takes the forms:

X
Xr

where r is one of the 8080 CPU registers listed in the following table.

4.2 DDT Commands CP/M Operating System Manual

4-10

 Table 4-3. CPU Registers

 Register Meaning Value
 C Carry flag (0/1)
 Z Zero flag (0/1)
 M Minus flag (0/1)
 E Even parity flag (0/1)
 I lnterdigit carry (0/1)
 A Accumulator (0-FF)
 B BC register pair (0-FFFF)
 D DE register pair (0-FFFF)
 H HL register pair (0-FFFF)
 S Stack pointer (0-FFFF)
 P Program counter (0-FFFF)

In the first case, the CPU register state is displayed in the format:

CfZfMfEflf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst

where f is a 0 or 1 flag value, bb is a byte value, and dddd is a double-byte quantity
corresponding to the register pair. The inst field contains the disassembled instruction, that
occurs at the location addressed by the CPU state's program counter.

The second form allows display and optional alteration of register values, where r is one of the
registers given above (C, Z, M, E, I, A, B, D, H, S, or P). In each case, the flag or register value is
first displayed at the console. The DDT program then accepts input from the console. If a
carriage return is typed, the flag or register value is not altered. If a value in the proper range is
typed, the flag or register value is altered. You should note that BC, DE, and HL are displayed as
register pairs. Thus, you must type the entire register pair when B, C, or the BC pair is altered.

4.3 Implementation Notes

The organization of DDT allows certain nonessential portions to be overlaid to gain a larger
transient program area for debugging large programs. The DDT program consists of two parts:
the DDT nucleus and the assembler/disassembler module. The DDT nucleus is loaded over the
CCP and, although loaded with the DDT nucleus, the assembler/disassembler is overlayable
unless used to assemble or disassemble.

4.2 DDT Commands CP/M Operating System Manual

4-11

In particular, the BDOS address at location 6H (address field of the JMP instruction at location
5H) is modified by DDT to address the base location of the DDT nucleus, which, in turn,
contains a JMP instruction to the BDOS. Thus, programs that use this address field to size
memory see the logical end of memory at the base of the DDT nucleus rather than the base of the
BDOS.

The assembler/disassembler module resides directly below the DDT nucleus in the transient
program area. If the A, L, T, or X commands are used during the debugging process, the DDT
program again alters the address field at 6H to include this module, further reducing the logical
end of memory. If a program loads beyond the beginning of the assembler/disassembler module,
the A and L commands are lost (their use produces a ? in response) and the trace and display (T
and X) commands list the inst field of the display in hexadecimal, rather than as a decoded
instruction.

4.4 A Sample Program

The following example silows an edit, assemble, and debug for a simple program that reads a set
of data values and determines the largest value in the set. The largest value is taken from the
vector and stored into LARGE at the termination of the program.

A>ED SCAN.ASM
*I

ORG 1-00H ;START OF TRANSIENT
;AREA

MVI B, LEN ;LENGTH OF VECTOR TO SCAN
MVI C, O ;LARGER_RST VALUE SO FAR

LOOP LXI H, VECT ;BASE OF VECTOR
LOOP: MOV A, M ;GET VALUE

SUB C ;LARGER VALUE IN C?
JNC NFOUND ;JUMP IF LARGER VALUE NOT

;FOUND
; NEW LARGEST VALUE, STORE IT TO C

MOV C, A
NFOUND INX H ;TO NEXT ELEMENT

DCR B ;MORE TO SCAN?
JNZ LOOP ;FOR ANOTHER

;
; END OF SCAN, STORE C

4.2 DDT Commands CP/M Operating System Manual

4-12

MOV A, C ;GET LARGEST VALUE
STA LARGE
JMP 0 ;REBOOT

;
; TEST DATA
VECT; DB 2,0,4,3,5,6,1,5
LEN EQU 4-VECT ;LENGTH
LARGE; DS 1 ;LARGEST VALUE ON EXIT

END

^-Z
*BOP

ORG 100H ;START OF TRANSIENT AREA
MVI B,LEN ;LENGTH OF VECTOR TO SCAN
MVI C,O ;LARGEST VALUE SO FAR
LXI H,VECT ;BASE OF VECTOR

LOOP: MOV A,M ;GET VALUE
SUB C ;LARGER VALUE IN C?
JNC NFOUND ;JUMP IF LARGER VALUE NOT

;FOUND
; NEW LARGEST VALUE, STORE IT TO C

MOV C,A
NFOUND: INX H ;TO NEXT ELEMENT

DCR B ;MORE TO SCAN?
JNZ LOOP ;FOR ANOTHER

; END OF SCAN, STORE C
MOV A,C ;GET LARGEST VALUE
STA LARGE
JMP 0 ;REBOOT

;
; TEST DATA

VECT: DB 2,0,4,3,5,6,1,5
LEN EQU $-VECT ;LENGTH
LARGE: DS 1 ;LARGEST VALUE ON EXIT

END
*E End of edit

4.3 Implementation Notes CP/M Operating System Manual

4-13

A>ASM, SCAN

CP/M ASSEMBLER - VER 1.0

0122
002H USE FACTOR
END OF ASSEMBLY Assembly complete; look at program listing

A>TYPE SCAN PRN
Code address Source program
0100 ORG 100H ;START OF TRANSIENT AREA
0100 0608 MVI B,LEN ;LENGTH OF VECTOR TO SCAN
0102 0E00 MVI C,O ;LARGEST VALUE SO FAR
0104 211901 LXI H,VECT ;BASE OF VECTOR
0107 7E LOOP: MOV A,M ;GET VALUE
0108 91 SUB C ;LARGER VALUE IN C?
0109 D20D01 JNC NFOUND ;JUMP IF LARGER VALUE NOT

;FOUND
; NEW LARGEST VALUE, STORE IT TO C

010C 4F MOV C,A
010D 23 NFOUND: INX H ;TO NEXT ELEMENT
010E 05 DCR B ;MORE TO SCAN?
010F C20701 JNZ LOOP ;FOR ANOTHER

;
; END OF SCAN, STORE C

0112 79 MOV A,C ;GET LARGEST VALUE
0113 322101 STA LARGE
0116 C30000 JMP 0 ;REBOOT
 ;

; TEST DATA
0118 0200040305 VECT: DB 2,0,4,3,5,6,1,5
0008 = LEN EQU $-VECT ;LENGTH
0121 LARGE; DS 1 ;LARGEST VALUE ON EXIT
0122 END

4.4 A Sample Program CP/M Operating System Manual

4-14

A>DDT SCAN. HEX Start debugger using hex format machine code

DDT VER 1.0
NEXT PC Next instruction
0121 0000 to execute at
-X PC = 0

|
COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0000 P=0000 OUT 7F
-XP \ Examine registers before debug run

P=0000 100 Change PC to 100

-X Look at registers again

COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0100 P=00120 MVI B,08
-L100
 PC changed Next instruction

to execute at PC = 100

0100 MVI B,08
0112 MVI C,00
0104 LXI H,0119
0107 MOV A,M
0108 SUB C
0109 JNC 010D
010C MOV C,A
010D INX H
010E DCR B
010F JNZ 0107
0112 MOV A,C

-L

4.4 A Sample Program CP/M Operating System Manual

4-15

0113 STA 0121
0116 JMP 0000
0119 STAX B A little more machine
011A NOP code. Note that pro-
011B INR B ram ends at location
011C INX B 116 with a JMP to
011D DCR B 0000. Remainder of
011E MVI B, 01 listing is assembly of
0120 DCR B data.
0121 LXI D,2200
0124 LXI H,0200
-A116 Enter in-line assembly mode to change the JMP to 0000 into a RST7,

which will cause the program under test to return to DDT if 116H is
ever executed.

0116 RST 7

0117 (Single carriage return stops assemble mode)

-L113 List code at 113H to check that RST 7 was properly inserted.

0113 STA 0121
0116 REST 07 in place of JMP
0117 NOP
0118 NOP
0119 STAX B
011A NOP
011B INR B
011C INX B
-

-X Look at registers

COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0100 P=0100 MVI B,08
-T
 Execute Preogram for one stop. Initial CPU state, before is executed

COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0100 P=0100 MVI B, 08*0102
 Automatic breakpoint/

4.4 A Sample Program CP/M Operating System Manual

4-16

Trace one step again (note 08H in B)
COZOMOEOIO A=00 B=0800 D=0000 H=0000 S=0100 P=0102 MVI C,00*0104
-T

Trace again (Register C is cleared)
COZOMEOIO A=00 B=0800 D=0000 H=0000 S=0100 P=0104 LXI H,0119*0107
-T3 Trace three steps
COZOMOEOIO A=00 B=0800 D=0000 H=0119 S=0100 P=0107 MOV A,M
COZOMOEOIO A=02 B=0800 D=0000 H=0119 S=0100 P=0100 SUB C
COZOMOEOI1 A=02 B=0800 D=0000 H=0119 S=0100 P=0109 JNC 010D*010D
-D119

Display memory starting at 119H. Automatic breakpoint at 10DH

0119 02 00 04 03 05 06 01 . Program data
0120 05 11 00 22 21 00 02 7E EB 77 13 23 EB 0B 78 B1 ..."!.. . W .#..X.
0130 C2 27 01 C3 03 29 00 00 00 00 00 00 00 00 00 00 ...'...)........
0140 00 00 00 00 00 0 00 00 00 00 00 00 00 00 00 00
0150 00 00 00 00 00 0 00 00 00 00 00 00 00 00 00 00
0160 00 00 00 00 00 0 00 00 00 00 00 00 00 00 00 00
0170 00 00 00 00 00 0 00 00 00 00 00 00 00 00 00 00
0180 00 00 00 00 00 0 00 00 00 00 00 00 00 00 00 00
0190 00 00 00 00 00 0 00 00 00 00 00 00 00 00 00 00
01A0 00 00 00 00 00 0 00 00 00 00 00 00 00 00 00 00
01B0 00 00 00 00 00 0 00 00 00 00 00 00 00 00 00 00
01C0 00 00 00 00 00 0 00 00 00 00 00 00 00 00 00 00
-X

Current CPU state
C0Z0M0E0I1 A-02 B-0800 D=0000 H=0119 S=0100 P=010D INX H
-T5 Trace 5 steps from current CPU state

C0Z0M0E0I1 A-02 B-0800 D=0000 H=0119 S=0100 P=010D INX H
C0Z0M0E0I1 A-02 B-0800 D=0000 H=011A S=0100 P=010E DCR B
C0Z0M0E0I1 A-02 B-0700 D=0000 H=011A S=0100 P=010F JNZ 0107
C0Z0M0E0I1 A-02 B-0700 D=0000 H=011A S=0100 P=0107 MOV A,M
C0Z0M0E0I1 A-00 B-0700 D=0000 H=011A S=0100 P=0108 SUB C*0109

U5

Trace without listing intermediate states
C0Z1M0E1I1 A-00 B-0700 D=0000 H=011A S=0100 P=0109 JNC 010D*0108
-X

4.4 A Sample Program CP/M Operating System Manual

4-17

CPU state at end of U5
COZOMOE1I1 A=04 B=0600 D=0000 H=001B S=0100 P=0108 SUB C
-G Run program from current PC until completion (in real-time)

*0116 breakpoint at 116H, caused by executing RST 7 in machine code

-X
CPU state at end of program

COZ1MOE1I1 A=00 B=0000 D=0000 H=0121 S=0100 P=0116 RST 07
-XP

Examine and change program counter.

P=0116 100

-X

COZ1MOE1I1 A=00 B=0000 D=0000 H=0121 S=0100 P=0100 MVI B,-08
-T10

4.4 A Sample Program CP/M Operating System Manual

4-18

Trace 10 (hexadecimal) steps
C0Z1M0E1I1 A-00 B-0800 D=0000 H=0121 S=0100 P=0100 MVI B,08
C0Z1M0E1I1 A-00 B-0000 D=0000 H=0121 S=0100 P=0102 MVI C,00
C0Z1M0E1I1 A-00 B-0800 D=0000 H=0121 S=0100 P=0103 LXI H,0119
C0Z1M0E1I1 A-00 B-0800 D=0000 H=0119 S=0100 P=0107 MOV A,M
C0Z1M0E1I1 A-02 B-0800 D=0000 H=0119 S=0100 P=0108 SUB C
C0Z1M0E1I1 A-02 B-0800 D=0000 H=0119 S=0100 P=0109 JNC 010D
C0Z1M0E1I1 A-02 B-0800 D=0000 H=0119 S=0100 P=010D INX H
C0Z1M0E1I1 A-02 B-0800 D=0000 H=011A S=0100 P=010E DCR B
C0Z1M0E1I1 A-02 B-0700 D=0000 H=011A S=0100 P=010F JNZ 0107
C0Z1M0E1I1 A-02 B-0700 D=0000 H=011A S=0100 P=0107 MOV A,M
C0Z1M0E1I1 A-00 B-0700 D=0000 H=011A S=0100 P=0108 SUB C
C0Z1M0E1I1 A-00 B-0700 D=0000 H=011A S=0100 P=0109 JNC 010D
C0Z1M0E1I1 A-00 B-0700 D=0000 H=011A S=0100 P=010D INX H
C0Z1M0E1I1 A-00 B-0700 D=0000 H=011B S=0100 P=010E DCR B
C0Z1M0E1I1 A-00 B-0600 D=0000 H=011B S=0100 P=010F JNZ 0107
C0Z1M0E1I1 A-00 B-0600 D=0000 H=011B S=0100 P=0107 MOV A,M*0108

Insert a "hot patch" into Program should have moved the
the machine code value from A into C since A>C.

0109 JC 100 to change the Since this code was not executed,
JNC to JC it appears that the JNC should

have been a JC instruction
010C

Stop DDT so that a version of
_GO the patched program can be saved

A>SAVE 1 SCAN.COM Program resides on first
page, so save 1 page.

A>DDT SCAN,COM
Restart DDT with the save memory

DDT VER 1.0 image to continue testing
NEXT PC
0200 0100

4.4 A Sample Program CP/M Operating System Manual

4-19

-L100 List some code

0100 MVI B,08
0102 MVI C,00
0104 LXI H,0119
0107 MOV A,M
0108 SUB C
0109 JC 010D Previous patch is present in X.COM
010C MOV C,A
010D INX H
010E DCR B
010F JNZ 0107
0112 MOV A,C
-XP

P=0100

-T10
Trace to see how patched version operates. Data is moved from A to C

C0Z0M0E0I0 A-00 B-0800 D=0000 H=0000 S=0100 P=0100 MVI B,08
C0Z0M0E0I0 A-00 B-0000 D=0000 H=0000 S=0100 P=0102 MVI C,00
C0Z0M0E0I0 A-00 B-0800 D=0000 H=0000 S=0100 P=0103 LXI H,0119
C0Z0M0E0I0 A-00 B-0800 D=0000 H=0119 S=0100 P=0107 MOV A,M
C0Z0M0E0I0 A-02 B-0800 D=0000 H=0119 S=0100 P=0108 SUB C
C0Z0M0E0I1 A-02 B-0800 D=0000 H=0119 S=0100 P=0109 JC 010D
C0Z1M0E1I1 A-00 B-0800 D=0000 H=0119 S=0100 P=010C MOV C,A
C0Z1M0E1I1 A-02 B-0802 D=0000 H=0119 S=0100 P=010D INX H
C0Z1M0E1I1 A-02 B-0802 D=0000 H=011A S=0100 P=010E DCR B
C0Z1M0E1I1 A-02 B-0702 D=0000 H=011A S=0100 P=010F JNZ 0107
C0Z1M0E1I1 A-02 B-0702 D=0000 H=011A S=0100 P=0107 MOV A,M
C0Z1M0E1I1 A-00 B-0702 D=0000 H=011A S=0100 P=0108 SUB C
C1Z0M1E0I0 A-00 B-0702 D=0000 H=011A S=0100 P=0109 JNC 010D
C1Z0M1E0I0 A-00 B-0702 D=0000 H=011A S=0100 P=010D INX H
C1Z0M1E0I0 A-00 B-0702 D=0000 H=011B S=0100 P=010E DCR B
C1Z0M0E1I1 A-00 B-0602 D=0000 H=011B S=0100 P=010F JNZ 0107*0107
-X /

Breakpoint after 16 steps

C1ZOMOE1I1 A=FE B=0602 D=000 H-011B S=0100 P-0107 MOV A,M
-G,108 Run from current PC and breakpoint at 108H

4.4 A Sample Program CP/M Operating System Manual

4-20

*0108
-X

 / Next data item
C1ZOMOE1I1 A=04 B=0602 D=0000 H=011B S=0100 P=0108 SUB C
-T

Single step for a few cycles
C1ZOMOE1I1 A=04 B=0602 D=0000 H=011B S=0100 P=0108 SUB C*0109
-T

COZOMOEOI1 A=02 B=0602 D=0000 H=001B S=0100 P=0109 JC 010D*010C
-X

COZOMOEOI1 A=02 B=0602 D=0000 H=001B S=0100 P=010C MOV C,A
-G Run to completion

*0116
-X
COZ1MOE1I1 A=03 B=0003 D=0000 H=0121 S=0100 P=0117 RST 07
-S121 Look at the value of 'LARGE'

0121 03 Wrong value"

0122 00

0123 22

0124 21

0125 00

0126 02

0127 7E End of the S command

4.4 A Sample Program CP/M Operating System Manual

4-21

-L100

0111 MVI B,08
0102 MVI C,00
0104 LXI H,0119
0107 MOV A,M
0108 SUB C
0109 JC 010D
010C MOV C,A
010D INX H
010E JNZ 0107
0112 MOV A,C
-L

0113 STA 0121
0116 RST 07
0117 NOP
0118 NOP
0119 STAX B
011A NOP
011A INR B
011B INX B
011D DCR B
011E MVU B,01
0120 DCR B
-XP

P=0116 100 Reset the PC

-T

Single step and watch data values
C0Z1M0E1I1 A-03 B-0003 D=0000 H=0121 S=0100 P=0100 MVI B,08*0102
-T

C0Z1M0E1I1 A-03 B-0803 D=0000 H=0121 S=0100 P=0102 MVI C,00*0104
-T

Count set\ /Largest set
C0Z1M0E1I1 A-03 B-0800 D=0000 H=0121 S=0100 P=0104 LXI H,0119*0107
-T

4.4 A Sample Program CP/M Operating System Manual

4-22

/ Base address of data set
C0Z1M0E1I1 A-03 B-0800 D=0000 H=0119 S=0100 P=0107 MOV A,M*0108
-T

 / First data item brought to A
C0Z1M0E1I1 A-02 B-0800 D=0000 H=0119 S=0100 P=0108 SUB C*0109
-T

C0Z0M0E0I1 A-02 B-0800 D=0000 H=0119 S=0100 P=0109 JC 010D*010C
-T

C0Z0M0E0I1 A-00 B-0800 D=0000 H=0119 S=0100 P=010C MOV C,A*010D
-T

 / First data item moved to C correctly
C0Z0M0E0I1 A-02 B-0802 D=0000 H=0119 S=0100 P=010D INX H*010E
-T

C0Z0M0E0I1 A-02 B-0802 D=0000 H=011A S=0100 P=010E DCR B*010F
-T

C0Z0M0E0I1 A-02 B-0702 D=0000 H=011A S=0100 P=010F JNZ 0107*0107
-T

C0Z0M0E0I1 A-02 B-0702 D=0000 H=011A S=0100 P=0107 MOV A,M*0108
-T

 / Second data item brought to A
C0Z0M0E0I1 A-00 B-0702 D=0000 H=011A S=0100 P=0108 SUB C*0109
-T

 / Subtract destroys data value that was loaded!
C1Z0M1E0I0 A-FE B-0702 D=0000 H=011A S=0100 P=0109 JNC 010D*010D
-T

C1Z0M1E0I0 A-FE B-0702 D=0000 H=011A S=0100 P=010D INX H*010E
-L100

4.4 A Sample Program CP/M Operating System Manual

4-23

0111 MVI B,08
0102 MVI C,00
0104 LXI H,0119
0107 MOV A,M
0108 SUB C <-- This should have been a CMP so that register A
0109 JC 010D would not be destroyed
010C MOV C,A
010D INX H
010E JNZ 0107
0112 MOV A,C
A108

0108 CPM C Hot pathc at 108H changes SUB to CMP

0109

-G0 Stop DDT for SAVE

A>SAVE 1 SCAN.COM Save memory image

DDT VER 1.0
NEVX PC
0200 0100
-XP

P=100

-L116

0116 RST 07
0117 NOP Look at code to see if it was properly loaded
0118 NOP (long typeout aborted with rubout)
0119 STAX B
011A NOP
-

-G,116 Run from 100 to completion

4.4 A Sample Program CP/M Operating System Manual

4-24

*0116
-XC
C1
-X

C1Z1M0E1I1 A=06 B=0006 D=0000 H=0121 S=0100 P=0116 RST 07
-S121 Look at "large" - it appears to be correct.

0121 06

0122 00

0123 22

-G0 Stop DDT

A>ED SCAN.ASM Re-edit the source program, and make both changes

*NSUB
*0LT

CTRL-Z SUB C ;LARGER VALUE IN C?
*SSUB^ZCMP^Z0LT

CMP D ;LARGER VALUE IN C?
*

JNC NFOUND ;JUMP IF LARGER VALUE NOT FOUND
*SNC^ZC^Z0LT

JC NFOUND ;JUMP IF LARGER VALUE NOT FOUND
*E

A>ASM SCAN.AAZ

CP/M ASSEMBLER VER 1.0

0122
002H USE FACTOR
END OF ASSEMBLY

4.4 A Sample Program CP/M Operating System Manual

4-25

A>DDT SCAN.HEX

DDT VER 1.0
NEXT PC
0121 0000
-L116

-116 JMP 0000 Check to ensure end is still at 116H

0119 STAX B

011A NOP
011B INR B

-(rubout)

-G100,116 Go from beginning with breakpoint at end

*0116 Breakpoint reached
-D121 Look at "LARGE"

0121 06 00 22 21 00 02 7e 77 12 23 eb 0b 78 b1 .. '!... W .#..X.
0130 c2 27 01 c3 03 29 00 00 00 00 00 00 00 00 00 00 .'...)........
0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

-(rubout) Aborts long typeout

G0 Stop DDT, debug sesssion complete.

End of Section 4

4.4 A Sample Program CP/M Operating System Manual

5.1 Introduction

This chapter describes CP/M (release 2) system organization including the structure of memory
and system entry points. This section provides the information you need to write programs that
operate under CP/M and that use the peripheral and disk I/O facilities of the system.

CP/M is logically divided into four parts, called the Basic Input/Output System (BIOS), the Basic
Disk Operating System (BDOS), the Console Command Processor (CCP), and the Transient
Program Area (TPA). The BIOS is a hardware-dependent module that defines the exact low level
interface with a particular computer system that is necessary for peripheral device I/O. Although
a standard BIOS is supplied by Digital Research, explicit instructions are provided for field
reconfiguration of the BIOS to match nearly any hardware environment, see Section 6.

The BIOS and BDOS are logically combined into a single module with a common entry point
and referred to as the FDOS. The CCP is a distinct program that uses the FDOS to provide a
human-oriented interface with the information that is cataloged on the back-up storage device.
The TPA is an area of memory, not used by the FDOS and CCP, where various nonresident
operating system commands and user programs are executed. The lower portion of memory is
reserved for system information and is detailed in later sections. Memory organization of the
CP/M system is shown in Figure 5-1.

Section 5
CP/M 2 System Interface

5-1

 +---------------------------------+
 High | |
 Memory | FDOS (BDOS + BIOS) |
 FBASE: | |
 +---------------------------------+
 | |
 | CCP |
 CBASE: | |
 +---------------------------------+
 | |
 | TPA |
 TBASE: | |
 +---------------------------------+
 | |
 | SYSTEM PARAMETERS |
 BOOT: | |
 +---------------------------------+

Figure 5-1. CP/M Memory Organization

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and FBASE vary from
version to version and are described fully n Section 6. All standard CP/M versions assume
BOOT=0000H, which is the base of random access memory. The machine code found at location
BOOT performs a system warm start, which loads and initializes the programs and variables
necessary to return control to the CCP. Thus, transient programs need only jump to location
BOOT to return control to CP/M at the command level. further, the standard versions assume
TBASE=BOOT+0100H, which is normally location 0100H. The principal entry point to the
FDOS is at location BOOT+0005H (normally 0005H) where a jump to BASE is found. The
address field at BOOT+0006H (normally 006H) contains the value of FBASE and can be used to
determine the size of available memory, assuming that the CCP is being overlaid by a transient
program.

5.1 Introduction CP/M Operating System Manual

5-2

Transient programs are loaded into the TPA and executed as follows. The operator
communicates with the CCP by typing command lines following each prompt. Each command
line takes one of the following forms:

command
command file1
command file1 file2

where command is either a built-in function, such as DIR or TYPE, or the name of a transient
command or program. If the command is a built-in function of CP/M, it is executed immediately.
Otherwise, the CCP searches the currently addressed disk for a file by the name

command.COM

If the file is found, it is assumed to be a memory image of a program that executes in the TPA
and thus implicity originates at TBASE in memory. The CCP loads the COM file from the disk
into memory starting at TBASE and can extend up to CBASE.

If the command is followed by one or two file specifications, the CCP prepares one or two File
Control Block (FCB) names in the system parameter area. These optional FCBs are in the form
necessary to access files through the FDOS and are described in Section 5.2.

The transient program receives control from the CCP and begins execution, using the I/O
facilities of the FDOS. The transient program is called from the CCP. Thus, it can simply return
to the CCP upon completion of its processing, or can Jump to BOOT to pass control back to
CP/M. In the first case, the transient program must not use memory above CBASE, while in the
latter case, memory up through FBASE-1 can be used.

The transient program can use the CP/M I/O facilities to communicate with the operator's
console and peripheral devices, including the disk subsystem. The I/O system is accessed by
passing a function number and an information address to CP/M through the FDOS entry point at
BOOT+0005H. In the case of a disk read, for example, the transient program sends the number
corresponding to a disk read, along with the address of an FCB to the CP/M FDOS. The FDOS,
in turn, performs the operation and returns with either a disk read completion indication or an
error number indicating that the disk read was unsuccessful.

5.1 Introduction CP/M Operating System Manual

5-3

5.2 Operating System Call Conventions

This section provides detailed information for performing direct operating system calls from user
programs. Many of the functions listed below, however, are accessed more simply through the
I/O macro library provided with the MAC macro assembler and listed in the Digital Research
manual entitled, "Programmer's Utilities Guide for the CP/M Family of Operating Systems."

CP/M facilities that are available for access by transient programs fall into two general
categories: simple device I/O and disk file I/O. The simple device operations are

 - read a console character
 - write a console character
 - read a sequential character
 - write a sequential character
 - get or set I/O status
 - print console buffer
 - interrogate console ready

The following FDOS operations perform disk I/O:

 - disk system reset
 - drive selection
 - file creation
 - file close
 - directory search
 - file delete
 - file rename
 - random or sequential read
 - random or sequential write
 - interrogate available disks
 - interrogate selected disk
 - set DMA address
 - set/reset file indicators.

As mentioned above, access to the FDOS functions is accomplished by passing a function
number and information address through the primary point at location BOOT+0005H. In general,
the function number is passed in register C with the information address in the double byte pair
DE. Single byte values are returned in register A, with double byte values returned in HL, a zero
value is returned when the function number is out of range. For reasons of compatibility, register
A = L and register B = H upon return in all cases. Note that the register passing conventions of
CP/M agree with those of the Intel PL/M systems programming language. CP/M functions and
their numbers are listed below.

5.1 Introduction CP/M Operating System Manual

5-4

 0 System Reset 19 Delete File
 1 Console Input 20 Read Sequential
 2 Console Output 21 Write Sequential
 3 Reader Input 22 Make File
 4 Punch Output 23 Rename File
 5 List Output 24 Return Login Vector
 6 Direct Console I/O 25 Return Current Disk
 7 Get I/O Byte 26 Set DMA Address
 8 Set I/O Byte 27 Get Addr(Alloc)
 9 Print String 28 Write Protect Disk
 10 Read Console Buffer 29 Get R/O Vector
 11 Get Console Status 30 Set File Attributes
 12 Return Version Number 31 Get Addr(Disk Parms)
 13 Reset Disk System 32 Set/Get User Code
 14 Select Disk 33 Read Random
 15 Open File 34 Write Random
 16 Close File 35 Compute File Size
 17 Search for First 36 Set Random Record
 18 Search for Next 37 Reset Drive
 40 Write Random with Zero Fill

Functions 28 and 32 should be avoided in application programs to maintain upward compatibility
with CP/M.

5.2 Call Conventions CP/M Operating System Manual

5-5

Upon entry to a transient program, the CCP leaves the stack pointer set to an eight-level stack
area with the CCP return address pushed onto the stack, leaving seven levels before overflow
occurs. Although this stack is usually not used by a transient program (most transients return to
the CCP through a jump to location 0000H) it is large enough to make CP/M system calls
because the FDOS switches to a local stack at system entry. For example, the assembly-language
program segment below reads characters continuously until an asterisk is encountered, at which
time control returns to the CCP, assuming a standard CP/M system with BOOT = 0000H.

 BDOS EQU 0005H ;STANDARD CP/M ENTRY
 CONIN EQU 1 ;CONSOLE INPUT FUNCTION
 ;
 ORG 0100H ;BASE OF TPA
 NEXTC: MVI C,CONIN ;READ NEXT CHARACTER
 CALL BDOS ;RETURN CHARACTER IN <A>
 CPI '*' ;END OF PROCESS ING?
 JNZ NEXTC ;LOOP IF NOT
 RET ;RETURN TO CCP
 END

CP/M implements a named file structure on each disk, providing a logical organization that
allows any particular file to contain any number of records from completely emptv to the full
capacity of the drive. Each drive is logically distinct with a disk directory and file data area. The
disk filenames are in three parts: the drive select code, the filename (consisting of one to eight
nonblank characters), and the filetype (consisting of zero to three nonblank characters). The
filetype names the generic category of a particular file, while the filename distinguishes
individual files in each category. The filetypes listed in Table 5-1 name a few generic categories
that have been established, although they are somewhat arbitrary.

5.2 Call Conventions CP/M Operating System Manual

5-6

Table 5-1. CP/M Filetypes

 Filetype Meaning

 ASM Assembler Source
 PRN Printer Listing
 HEX Hex Machine Code
 BAS Basic Source File
 INT Intermediate Code
 COM Command File
 PLI PL/I Source File
 REL Relocatable Module
 TEX TEX Formatter Source
 BAK ED Source Backup
 SYM SID Symbol File
 $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each line of the source file is
followed by a carriage return, and line-feed sequence (0DH followed by 0AH). Thus, one
128-byte CP/M record can contain several lines of source text. The end of an ASCII file is
denoted by a CTRL-Z character (1AH) or a real end-of-file returned by the CP/M read operation.
CTRL-Z characters embedded within machine code files (for example, COM files) are ignored
and the end-of-file condition returned by CP/M is used to terminate read operations.

5.2 Call Conventions CP/M Operating System Manual

5-7

Files in CP/M can be thought of as a sequence of up to 65536 records of 128 bytes each,
numbered from 0 through 65535, thus allowing a maximum of 8 megabytes per file. Note,
however, that although the records may be considered logically contiguous, they may not be
physically contiguous in the disk data area. Internally, all files are divided into 16K byte
segments called logical extents, so that counters are easily maintained as 8-bit values. The
division into extents is discussed in the paragraphs that follow: however, they are not particularly
significant for the programmer, because each extent is automatically accessed in both sequential
and random access modes.

In the file operations starting with Function 15, DE usually addresses a FCB. Transient programs
often use the default FCB area reserved by CP/M at location BOOT+005CH (normally 005CH)
for simple file operations. The basic unit of file information is a 128-byte record used for all file
operations. Thus, a default location for disk I/O is provided by CP/M at location BOOT+0080H
(normally 0080H) which is the initial default DMA address. See Function 26.

All directory operations take place in a reserved area that does not affect write buffers as was the
case in release 1, with the exception of Search First and Search Next, where compatibility is
required.

The FCB data area consists of a sequence of 33 bytes for sequential access and a series of 36
bytes in the case when the file is accessed randomly. The default FCB, normally located at
005CH, can be used for random access files, because the three bytes starting at BOOT+007DH
are available for this purpose. Figure 5-2 shows the FCB format with the following fields.

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |DR|F1|F2|//|F8|T1|T2|T3|EX|S1|S2|RC|DO|//|DN|CR|R0|R1|R2|
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 00 01 02 ...08 09 10 11 12 13 14 15 16 ...31 32 33 34 35

 Figure 5-2. File Control Block Format

5.2 Call Conventions CP/M Operating System Manual

5-8

The following table lists and describes each of the fields in the File Control Block figure.

 Table 5-2. File Control Block Fields

 Field Definition
 dr drive code (0-16)

0 = use default drive for file
1 = auto disk select drive A,
2 = auto disk select drive B,
 ...
16 = auto disk select drive P.

 f1...f8 contain the filename in ASCII upper-case, with high bit = 0

 t1,t2,t3 contain the filetype in ASCII upper-case, with high bit = 0. t1', t2', and t3' denote
the bit of these positions,

 t1' = 1 = >Read-Only file,
 t2' = 1 = >SYS file, no DIR list

 ex contains the current extent number, normally set to 00 by the user, but in range
0-31 during file I/O

 s1 reserved for internal system use

 s2 reserved for internal system use, set to zero on call to OPEN, MAKE, SEARCH

 rc record count for extent ex; takes on values from 0-127

 d0...dn filled in by CP/M; reserved for system use

 cr current record to read or write in a sequential file operation; normally set to zero
by user

 r0,r1,r2 optional random record number in the range 0-65535, with overflow to r2, r0, r1
constitute a 16-bit value with low byte r0, and high byte r1

5.2 Call Conventions CP/M Operating System Manual

5-9

Each file being accessed through CP/M must have a corresponding FCB, which provides the
name and allocation information for all subsequent file operations. When accessing files, it is the
programmer's responsibility to fill the lower 16 bytes of the FCB and initialize the cr field.
Normally, bytes 1 through 11 are set to the ASCII character values for the filename and filetype,
while all other fields are zero.

FCBs are stored in a directory area of the disk, and are brought into central memory before the
programmer proceeds with file operations (see the OPEN and MAKE functions). The memory
copy of the FCB is updated as file operations take place and later recorded permanently on disk
at the termination of the file operation, (see the CLOSE command).

The CCP constructs the first 16 bytes of two optional FCBs for a transient by scanning the
remainder of the line following the transient name, denoted by file1 and file2 in the prototype
command line described above, with unspecified fields set to ASCII blanks. The first FCB is
constructed at location BOOT+005CH and can be used as is for subsequent file operations. The
second FCB occupies the d0 ... dn portion of the first FCB and must be moved to another area of
memory before use. If, for example, the following command line is typed:

PROGNAME B:X.ZOT Y.ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at BOOT+005CH is
initialized to drive code 2, filename X, and filetype ZOT. The second drive code takes the default
value 0, which is placed at BOOT+006CH, with the filename Y placed into location
BOOT+006DH and filetype ZAP located 8 bytes later at BOOT+0075H. All remaining fields
through cr are set to zero. Note again that it is the programmer's responsibility to move this
second filename and filetype to another area, usually a separate file control block, before opening
the file that begins at BOOT+005CH, because the open operation overwrites the second name
and type.

If no filenames are specified in the original command, the fields beginning at BOOT+005DH and
BOOT+006DH contain blanks. In all cases, the CCP translates lower-case alphabetics to
upper-case to be consistent with the CP/M file naming conventions.

5.2 Call Conventions CP/M Operating System Manual

5-10

As an added convenience, the default buffer area at location BOOT+0080H is initialized to the
command line tail typed by the operator following the program name. The first position contains
the number of characters, with the characters themselves following the character count. Given the
above command line, the area beginning at BOOT+0080H is initialized as follows:

 BOOT+0080H:
 +00 +01 +02 +03 +04 +05 +06 +07 +08 +09 + A + B + C + D + E
 E '' 'B' ':' 'X' '.' 'Z' 'O' 'T' '' 'Y' '.' 'Z' 'A' 'P'

where the characters are translated to upper-case ASCII with uninitialized memory following the
last valid character. Again, it is the responsibility of the programmer to extract the information
from this buffer before any file operations are performed, unless the default DMA address is
explicitly changed.

Individual functions are described in detail in the pages that follow.

FUNCTION 0: SYSTEM RESET

Entry Parameters:
Register C: 00H

The System Reset function returns control to the CP/M operating system at the CCP level. The
CCP reinitializes the disk subsystem by selecting and logging-in disk drive A. This function has
exactly the same effect as a jump to location BOOT.

5.2 Call Conventions CP/M Operating System Manual

5-11

FUNCTION 1: CONSOLE INPUT

Entry Parameters:
RegisterC: 01H

Returned Value:
Register A: ASCII Character

The Console Input function reads the next console character to register A. Graphic characters,
along with carriage return, line-feed, and back space (CTRL-H) are echoed to the console. Tab
characters, CTRL-I, move the cursor to the next tab stop. A check is made for start/stop scroll,
CTRL-S, and start/stop printer echo, CTRL-P. The FDOS does not return to the calling program
until a character has been typed, thus suspending execution if a character is not ready.

FUNCTION 2: CONSOLE OUTPUT

Entry Parameters:
Register C: 02H
Register E: ASCII Character

The ASCII character from register E is sent to the console device. As in Function 1, tabs are
expanded and checks are made for start/stop scroll and printer echo.

5.2 Call Conventions CP/M Operating System Manual

5-12

FUNCTION 3: READER INPUT

Entry Parameters:
Register C: 03H

Returned Value:
Register A: ASCII Character

The Reader Input function reads the next character from the logical reader into register A. See
the IOBYTE definition in Section 6. Control does not return until the character has been read.

FUNCTION 4: PUNCH OUTPUT

Entry Parameters:
Register C: 04H
Register E: ASCII Character

The Punch Output function sends the character from register E to the logical punch device.

5.2 Call Conventions CP/M Operating System Manual

5-13

FUNCTION 5: LIST OUTPUT

Entry Parameters:
Register C: 05H
Register E: ASCII Character

The List Output function sends the ASCII character in register E to the logical listing device.

FUNCTION 6: DIRECT CONSOLE 1/0

Entry Parameters:
Register C: 06H
Register E: OFFH (input) or

char(output)

Returned Value: char or status Register A:

Direct Console I/O is supported under CP/M for those specialized applications where basic
console input and output are required. Use of this function should, in general, be avoided since it
bypasses all of the CP/M normal control character functions (for example, CTRL-S and
CTRL-P). Programs that perform direct I/O through the BIOS under previous releases of CP/M,
however, should be changed to use direct I/O under BDOS so that they can be fully supported
under future releases of MP/M and CP/M.

Upon entry to Function 6, register E either contains hexadecimal FF, denoting a console input
request, or an ASCII character. If the input value is FF, Function 6 returns A = 00 if no character
is ready, otherwise A contains the next console input character.

If the input value in E is not FF, Function 6 assumes that E contains a valid ASCII character that
is sent to the console.

Function 6 must not be used in conjunction with other console I/O functions.

5.2 Call Conventions CP/M Operating System Manual

5-14

FUNCTION 7: GET 1/0 BYTE

Entry Parameters:
Register C: 07H

Returned Value:

Register A: 1/0 Byte Value

The Get I/O Byte function returns the current value of IOBYTE in register A. See Section 6 for
IOBYTE definition.

FUNCTION 8: SET I/0 BYTE

Entry Parameters:

Register C: 08H

Register E: 1/0 Byte Value

The SET I/O Byte function changes the IOBYTE value to that given in register E.

FUNCTION 9: PRINT STRING

Entry Parameters:

Register C: 09H

Registers DE: String Address

The Print String function sends the character string stored in memory at the location given by DE
to the console device, until a $ is encountered in the string. Tabs are expanded as in Function 2,
and checks are made for start/stop scroll and printer echo.

FUNCTION10: READ CONSOLE BUFFER

5.2 Call Conventions CP/M Operating System Manual

5-15

Entry Parameters:
Register C: OAH

Registers DE: Buffer Address

Returned Value:
Console Characters in Buffer

The Read Buffer function reads a line of edited console input into a buffer addressed by registers
DE. Console input is terminated when either input buffer overflows or a carriage return or
line-feed is typed. The Read Buffer takes the form:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 ... +n
 mx nc cl c2 c3 c4 c5 c6 c7 ... ??

where mx is the maximum number of characters that the buffer will hold, 1 to 255, and nc is the
number of characters read (set by FDOS upon return) followed by the characters read from the
console. If nc < mx, then uninitialized positions follow the last character, denoted by ?? in the
above figure. A number of control functions, summarized in Table 5-3, are recognized during
line editing.

Table 5-3. Edit Control Characters

 Character Edit Control Function

 rub/del removes and echoes the last character

 CTRL-C reboots when at the beginning of line

 CTRL-E causes physical end of line

 CTRL-H backspaces one character position

 CTRL-J (line-feed) terminates input line

5.2 Call Conventions CP/M Operating System Manual

5-16

Table 5-3. (continued)

 Character Edit Control Function

 CTRL-M (return) terminates input line

 CTRL-R retypes the current line after new line

 CTRL-U removes current line

 CTRL-X same as CTRL-U

The user should also note that certain functions that return the carriage to the leftmost position
(for example, CTRL-X) do so only to the column position where the prompt ended. In earlier
releases, the carriage returned to the extreme left margin. This convention makes operator data
input and line correction more legible.

FUNCTION11: GET CONSOLE STATUS

Entry Parameters:
Register C: 0BH

Returned Value:

Register A: Console Status

The Console Status function checks to see if a character has been typed at the console. If a
character is ready, the value 0FFH is returned in register A. Otherwise a 00H value is returned.

5.2 Call Conventions CP/M Operating System Manual

5-17

FUNCTION 12: RETURN VERSION NUMBER

Entry Parameters:
Register C: 0CH

Returned Value: Version Number
Registers HL:

Function 12 provides information that allows version independent programming. A two-byte
value is returned, with H = 00 designating the CP/M release (H = 01 for MP/M) and L = 00 for
all releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in register L, with subsequent
version 2 releases in the hexadecimal range 21, 22, through 2F. Using Function 12, for example,
the user can write application programs that provide both sequential and random access
functions.

FUNCTION 13: RESET DISK SYSTEM

Entry Parameters:
Register C: ODH

The Reset Disk function is used to programmatically restore the file system to a reset state where
all disks are set to Read-Write. See functions 28 and 29, only disk drive A is selected, and the
default DMA address is reset to BOOT+0080H. This function can be used, for example, by an
application program that requires a disk change without a system reboot.

5.2 Call Conventions CP/M Operating System Manual

5-18

FUNCTION 14: SELECT DISK

Entry Parameters:

Register C: 0EH
Register E: Selected Disk

The Select Disk function designates the disk drive named in register E as the default disk for
subsequent file operations, with E = 0 for drive A, 1 for drive B, and so on through 15,
corresponding to drive P in a full 16 drive system. The drive is placed in an on-line status, which
activates its directory until the next cold start, warm start, or disk system reset operation. If the
disk medium is changed while it is on-line, the drive automatically goes to a Read-Only status in
a standard CP/M environment, see Function 28. FCBs that specify drive code zero (dr = 00H)
automatically reference the currently selected default drive. Drive code values between I and 16
ignore the selected default drive and directly reference drives A through P.

FUNCTION 15: OPEN FILE

Entry Parameters:

Register C: 0FH
Registers DE: FCB Address

Returned Value:

Register A: Directory Code

The Open File operation is used to activate a file that currently exists in the disk directory for the
currently active user number. The FDOS scans the referenced disk directory for a match in
positions 1 through 14 of the FCB referenced by DE (byte s1 is automatically zeroed) where an
ASCII question mark (3FH) matches any directory character in any of these positions. Normally,
no question marks are included, and bytes ex and s2 of the FCB are zero.

5.2 Call Conventions CP/M Operating System Manual

5-19

If a directory element is matched, the relevant directory information is copied into bytes d0
through dn of FCB, thus allowing access to the files through subsequent read and write
operations. The user should note that an existing file must not be accessed until a successful open
operation is completed. Upon return, the open function returns a directory code with the value 0
through 3 if the open was successful or 0FFH (255 decimal) if the file cannot be found. If
question marks occur in the FCB, the first matching FCB is activated. Note that the current
record, (cr) must be zeroed by the program if the file is to be accessed sequentially from the first
record.

FUNCTION 16: CLOSE FILE

Entry Parameters:
Register C: 10H

Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Close File function performs the inverse of the Open File function. Given that the FCB
addressed by DE has been previously activated through an open or make function, the close
function permanently records the new FCB in the reference disk directory see functions 15 and
22. The FCB matching process for the close is identical to the open function. The directory code
returned for a successful close operation is 0, 1, 2, or 3, while a 0FFH (255 decimal) is returned if
the filename cannot be found in the directory. A file need not be closed if only read operations
have taken place. If write operations have occurred, the close operation is necessary to record the
new directory information permanently.

5.2 Call Conventions CP/M Operating System Manual

5-20

FUNCTION 17: SEARCH FOR FIRST

Entry Parameters:
RegisterC: 11H
Registers DE: FCB Address

Returned Value:

Register A: Directory Code

Search First scans the directory for a match with the file given by the FCB addressed by DE. The
value 255 (hexadecimal FF) is returned if the file is not found; otherwise, 0, 1, 2, or 3 is returned
indicating the file is present. When the file is found, the current DMA address is filled with the
record containing the directory entry, and the relative starting position is A * 32 (that is, rotate
the A register left 5 bits, or ADD A five times). Although not normally required for application
programs, the directory information can be extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any position from fl through ex
matches the corresponding field of any directory entry on the default or auto-selected disk drive.
If the dr field contains an ASCII question mark, the auto disk select function is disabled and the
default disk is searched, with the search function returning any matched entry, allocated or free,
belonging to any user number. This latter function is not normally used by application programs,
but it allows complete flexibility to scan all current directory values. If the dr field is not a
question mark, the s2 byte is automatically zeroed.

5.2 Call Conventions CP/M Operating System Manual

5-21

FUNCTION 18: SEARCH FOR NEXT

Entry Parameters:
Register C: 12H

Returned Value:
Register A: Directory Code

The Search Next function is similar to the Search First function, except that the directory scan
continues from the last matched entry. Similar to Function 17, Function 18 returns the decimal
value 255 in A when no more directory items match.

FUNCTION 19: DELETE FILE

Entry Parameters:
Register C: 13H

Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Delete File function removes files that match the FCB addressed by DE. The filename and
type may contain ambiguous references (that is, question marks in various positions), but the
drive select code cannot be ambiguous, as in the Search and Search Next functions.

 Function 19 returns a decimal 255 if the referenced file or files cannot be found; otherwise, a
value in the range 0 to 3 returned.

5.2 Call Conventions CP/M Operating System Manual

5-22

FUNCTION 20: READ SEQUENTIAL

Entry Parameters:

Register C: 14H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an Open or Make function, the
Read Sequential function reads the next 128-byte record from the file into memory at the current
DMA address. The record is read from position cr of the extent, and the cr field is automatically
incremented to the next record position. If the cr field overflows, the next logical extent is
automatically opened and the cr field is reset to zero in preparation for the next read operation.
The value 00H is returned in the A register if the read operation was successful, while a nonzero
value is returned if no data exist at the next record position (for example, end-of-file occurs).

5.2 Call Conventions CP/M Operating System Manual

5-23

FUNCTION21: WRITE SEQUENTIAL

Entry Parameters:
Register C: 15H

Registers DE: FCB Address

Returned Value:

Register A: Directory Code

Given that the FCB addressed by DE has been activated through an Open or Make function, the
Write Sequential function writes the 128-byte data record at the current DMA address to the file
named by the FCB. The record is placed at position cr of the file, and the cr field is automatically
incremented to the next record position. If the cr field overflows, the next logical extent is
automatically opened and the cr field is reset to zero in preparation for the next write operation.
Write operations can take place into an existing file, in which case newly written records overlay
those that already exist in the file. Register A = 00H upon return from a successful write
operation, while a nonzero value indicates an unsuccessful write caused by a full disk.

5.2 Call Conventions CP/M Operating System Manual

5-24

FUNCTION 22: MAKE FILE

Entry Parameters:
Register C: 16H

Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Make File operation is similar to the Open File operation except that the FCB must name a
file that does not exist in the currently referenced disk directory (that is, the one named explicitly
by a nonzero dr code or the default disk if dr is zero). The FDOS creates the file and initializes
both the directory and main memory value to an empty file. The programmer must ensure that no
duplicate filenames occur, and a preceding delete operation is sufficient if there is any possibility
of duplication. Upon return, register A = 0, 1, 2, or 3 if the operation was successful and 0FFH
(255 decimal) if no more directory space is available. The Make function has the side effect of
activating the FCB and thus a subsequent open is not necessary.

FUNCTION 23: RENAME FILE

Entry Parameters:
Register C: 17H

Registers DE: FCB Address

Returned Value:

Register A: Directory Code

The Rename function uses the FCB addressed by DE to change all occurrences of the file named
in the first 16 bytes to the file named in the second 16 bytes. The drive code dr at postion 0 is
used to select the drive, while the drive code for the new filename at position 16 of the FCB is
assumed to be zero. Upon return, register A is set to a value between 0 and 3 if the rename was
successful and 0FFH (255 decimal) if the first filename could not be found in the directory scan.

5.2 Call Conventions CP/M Operating System Manual

5-25

FUNCTION 24: RETURN LOG-IN VECTOR

Entry Parameters:
Register C: 18H

Returned Value:
Registers HL: Log-in Vector

The log-in vector value returned by CP/M is a 16-bit value in HL, where the least significant bit
of L corresponds to the first drive A and the high-order bit of H corresponds to the sixteenth
drive, labeled P. A 0 bit indicates that the drive is not on-line, while a I bit marks a drive that is
actively on-line as a result of an explicit disk drive selection or an implicit drive select caused by
a file operation that specified a nonzero dr field. The user should note that compatibility is
maintained with earlier releases, because registers A and L contain the same values upon return.

FUNCTION 25: RETURN CURRENT DISK

Entry Parameters:
Register C: 19H

Returned Value:
Register A: Current Disk

Function 25 returns the currently selected default disk number in register A. The disk numbers
range from 0 through 15 corresponding to drives A through P.

5.2 Call Conventions CP/M Operating System Manual

5-26

FUNCTION 26: SET DMA ADDRESS

Entry Parameters:
Register C: 1AH

Registers DE: DMA Address

DMA is an acronym for Direct Memory Address, which is often used in connection with disk
controllers that directly access the memory of the mainframe computer to transfer data to and
from the disk subsystem. Although many computer systems use non-DMA access (that is, the
data is transferred through programmed I/O operations), the DMA address has, in CP/M, come to
mean the address at which the 128-byte data record resides before a disk write and after a disk
read. Upon cold start, warm start, or disk system reset, the DMA address is automatically set to
BOOT+0080H. The Set DMA function can be used to change this default value to address
another area of memory where the data records reside. Thus, the DMA address becomes the
value specified by DE until it is changed by a subsequent Set DMA function, cold start, warm
start, or disk system reset.

FUNCTION 27: GET ADDR (ALLOC)

Entry Parameters:
Register C: I BH

Returned Value:
Registers HL: ALLOC Address

An allocation vector is maintained in main memory for each on-line disk drive. Various system
programs use the information provided by the allocation vector to determine the amount of
remaining storage (see the STAT program). Function 27 returns the base address of the allocation
vector for the currently selected disk drive. However, the allocation information might be invalid
if the selected disk has been marked Read-Only. Although this function is not normally used by
application programs, additional details of the allocation vector are found in Section 6.

5.2 Call Conventions CP/M Operating System Manual

5-27

FUNCTION 28: WRITE PROTECT DISK

Entry Parameters:
Register C: I CH

The Write Protect Disk function provides temporary write protection for the currently selected
disk. Any attempt to write to the disk before the next cold or warm start operation produces the
message:

BDOS ERR on d:R/O

FUNCTION 29: GET READ-ONLY VECTOR

Entry Parameters:
Register C: lDH

Returned Value:
Registers HL: R/O Vector Value

Function 29 returns a bit vector in register pair HL, which indicates drives that have the
temporary Read-Only bit set. As in Function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/O bit is set either by an explicit call
to Function 28 or by the automatic software mechanisms within CP/M that detect changed disks.

5.2 Call Conventions CP/M Operating System Manual

5-28

FUNCTION 30: SET FILE ATTRIBUTES

Entry Parameters:
Register C: 1EH

Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Set File Attributes function allows programmatic manipulation of permanent indicators
attached to files. In particular, the R/O and System attributes (t1' and t2') can be set or reset. The
DE pair addresses an unambiguous filename with the appropriate attributes set or reset. Function
30 searches for a match and changes the matched directory entry to contain the selected
indicators. Indicators f1' through f4' are not currently used, but may be useful for applications
programs, since they are not involved in the matching process during file open and close
operations. Indicators f5' through f8' and t3' are reserved for future system expansion.

FUNCTION31: GETADDR(DISKPARMS)

Entry Parameters:
Register C: 1FH

Returned Value:
Registers HL: DPB Address

The address of the BIOS resident disk parameter block is returned in HL as a result of this
function call. This address can be used for either of two purposes. First, the disk parameter values
can be extracted for display and space computation purposes, or transient programs can
dynamically change the values of current disk parameters when the disk environment changes, if
required. Normally, application programs will not require this facility.

5.2 Call Conventions CP/M Operating System Manual

5-29

FUNCTION 32: SET/GET USER CODE

Entry Parameters:
Register C: 20H
Register E: OFFH (get) or

User Code (set)

Returned Value:
Register A: Current Code or

(no value)

An application program can change or interrogate the currently active user number by calling
Function 32. If register E = 0FFH, the value of the current user number is returned in register A,
where the value is in the range of 0 to 15. If register E is not 0FFH, the current user number is
changed to the value of E, modulo 16.

FUNCTION 33: READ RANDOM

Entry Parameters:
RegisterC: 21H

Returned Value:
Register A: Return Code

The Read Random function is similar to the sequential file read operation of previous releases,
except that the read operation takes place at a particular record number, selected by the 24-bit
value constructed from the 3-byte field following the FCB (byte positions r0 at 33, r1 at 34, and
r2 at 35). The user should note that the sequence of 24 bits is stored with least significant byte
first (r0), middle byte next (r1), and high byte last (r2). CP/M does not reference byte r2, except
in computing the size of a file (Function 35). Byte r2 must be zero, however, since a nonzero
value indicates overflow past the end of file.

5.2 Call Conventions CP/M Operating System Manual

5-30

Thus, the r0, r1 byte pair is treated as a double-byte, or word value, that contains the record to
read. This value ranges from 0 to 65535, providing access to any particular record of the
8-megabyte file. To process a file using random access, the base extent (extent 0) must first be
opened. Although the base extent might or might not contain any allocated data, this ensures that
the file is properly recorded in the directory and is visible in DIR requests. The selected record
number is then stored in the random record field (r0, r1), and the BDOS is called to read the
record.

Upon return from the call, register A either contains an error code, as listed below, or the value
00, indicating the operation was successful. In the latter case, the current DMA address contains
the randomly accessed record. Note that contrary to the sequential read operation, the record
number is not advanced. Thus, subsequent random read operations continue to read the same
record.

Upon each random read operation, the logical extent and current record values are automatically
set. Thus, the file can be sequentially read or written, starting from the current randomly accessed
position. However, note that, in this case, the last randomly read record will be reread as one
switches from random mode to sequential read and the last record will be rewritten as one
switches to a sequential write operation. The user can simply advance the random record position
following each random read or write to obtain the effect of sequential I/O operation.

Error codes returned in register A following a random read are listed below.

01 reading unwritten data
02 (not returned in random mode)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)
06 seek Past Physical end of disk

Error codes 01 and 04 occur when a random read operation accesses a data block that has not
been previously written or an extent that has not been created, which are equivalent conditions.
Error code 03 does not normally occur under proper system operation. If it does, it can be cleared
by simply rereading or reopening extent zero as long as the disk is not physically write protected.
Error code 06 occurs whenever byte r2 is nonzero under the current 2.0 release. Normally,
nonzero return codes can be treated as missing data, with zero return codes indicating operation
complete.

5.2 Call Conventions CP/M Operating System Manual

5-31

FUNCTION 34: WRITE RANDOM

Entry Parameters:
Register C: 22H

Registers DE: FCB Address

Returned Value:
Register A: Return Code

The Write Random operation is initiated similarly to the Read Random call, except that data is
written to the disk from the current DMA address. Further, if the disk extent or data block that is
the target of the write has not yet been allocated, the allocation is performed before the write
operation continues. As in the Read Random operation, the random record number is not
changed as a result of the write. The logical extent number and current record positions of the
FCB are set to correspond to the random record that is being written. Again, sequential read or
write operations can begin following a random write, with the notation that the currently
addressed record is either read or rewritten again as the sequential operation begins. You can also
simply advance the random record position following each write to get the effect of a sequential
write operation. Note that reading or writing the last record of an extent in random mode does not
cause an automatic extent switch as it does in sequential mode.

The error codes returned by a random write are identical to the random read operation with the
addition of error code 05, which indicates that a new extent cannot be created as a result of
directory overflow.

5.2 Call Conventions CP/M Operating System Manual

5-32

FUNCTION 35: COMPUTE FILE SIZE

Entry Parameters:
Register C: 23H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

When computing the size of a file, the DE register pair addresses an FCB in random mode format
(bytes r0, r1, and r2 are present). The FCB contains an unambiguous filename that is used in the
directory scan. Upon return, the random record bytes contain the virtual file size, which is, in
effect, the record address of the record following the end of the file. Following a call to Function
35, if the high record byte r2 is 01, the file contains the maximum record count 65536.
Otherwise, bytes r0 and r1 constitute a 16-bit value as before (r0 is the least significant byte),
which is the file size.

Data can be appended to the end of an existing file by simply calling Function 35 to set the
random record position to the end-of-file and then performing a sequence of random writes
starting at the preset record address.

The virtual size of a file corresponds to the physical size when the file is written sequentially. If
the file was created in random mode and holes exist in the allocation, the file might contain fewer
records than the size indicates. For example, if only the last record of an 8-megabyte file is
written in random mode (that is, record number 65535), the virtual size is 65536 records,
although only one block of data is actually allocated.

5.2 Call Conventions CP/M Operating System Manual

5-33

FUNCTION 36: SET RANDOM RECORD

Entry Parameters:
Register C: 24H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

The Set Random Record function causes the BDOS automatically to produce the random record
position from a file that has been read or written sequentially to a particular point. The function
can be useful in two ways.

First, it is often necessary initially to read and scan a sequential file to extract the positions of
various key fields. As each key is encountered, Function 36 is called to compute the random
record position for the data corresponding to this key. If the data unit size is 128 bytes, the
resulting record position is placed into a table with the key for later retrieval. After scanning the
entire file and tabulating the keys and their record numbers, the user can move instantly to a
particular keyed record by performing a random read, using the corresponding random record
number that was saved earlier. The scheme is easily generalized for variable record lengths,
because the program need only store the buffer-relative byte position along with the key and
record number to find the exact starting position of the keyed data at a later time.

A second use of Function 36 occurs when switching from a sequential read or write over to
random read or write. A file is sequentially accessed to a particular point in the file, Function 36
is called, which sets the record number, and subsequent random read and write operations
continue from the selected point in the file.

5.2 Call Conventions CP/M Operating System Manual

5-34

FUNCTION 37: RESET DRIVE

Entry Parameters:

Register C: 25H
Registers DE: Drive Vector

Returned Value:
Register A: 00H

The Reset Drive function allows resetting of specified drives. The passed parameter is a 16-bit
vector of drives to be reset; the least significant bit is drive A:.

To maintain compatibility with MP/M, CP/M returns a zero value.

FUNCTION 40: WRITE RANDOM WITH ZERO FILL

Entry Parameters:
Register C: 28H

Registers DE: FCB Address

Returned Value:
Register A: Return Code

The Write With Zero Fill operation is similar to Function 34, with the exception that a previously
unallocated block is filled with zeros before the data is written.

5.2 Call Conventions CP/M Operating System Manual

5-35

5.3 A Sample File-to-File Copy Program

The following program provides a relatively simple example of file operations. The program
source file is created as COPY.ASM using the CP/M ED program and then assembled using
ASM or MAC, resulting in a HEX file. The LOAD program is used to produce a COPY.COM
file that executes directly under the CCP. The program begins bv setting the stack pointer to a
local area and proceeds to move the second name from the default area at 006CH to a 33-byte
File Control Block called DFCB. The DFCB is then prepared for file operations by clearing the
current record field. At this point, the source and destination FCBs are ready for processing,
because the SFCB at 005CH is properly set up by the CCP upon entry to the COPY program.
That is, the first name is placed into the default FCB, with the proper fields zeroed, including the
current record field at 007CH. The program continues by opening the source file, deleting any
existing destination file, and creating the destination file. If all this is successful, the program
loops at the label COPY until each record is read from the source file and placed into the
destination file. Upon completion of the data transfer, the destination file is closed and the
program returns to the CCP command level by jumping to BOOT.

 ; sample file-to-file copy program
 ;
 ;
 ; at the ccp level, the command
 ;
 ;
 ; copy a:x.y b:u.v
 ;
 ;
 0000 = boot equ 0000h ; system reboot
 0005 = bdos equ 0005h ; bdos entry point
 005C = fcb1 equ 005ch ; first file name
 005C = sfcb equ fcb1 ; source fcb
 006C = fcb2 equ 006ch ; second file name
 0080 = dbuff equ 0080h ; default buffer
 0100 = tpa equ 0100h ; beginning of tpa
 ;
 0009 = printf equ 9 ; print buffer func#
 000F = openf equ 15 ; open file func#
 0010 = closef equ 16 ; close file func#
 0013 = deletef equ 19 ; delete file func#
 0014 = readf equ 20 ; sequential read func#
 0015 = writef equ 21 ; sequential write

5.2 Call Conventions CP/M Operating System Manual

5-36

 0016 = makef equ 22; make file func#
 ;
 0100 org tpa ; beginning of tpa
 0100 311902 lxi sp,stack ; set local stack
 0103 0E10 mvi c,16 ; half an fcb
 0105 116C00 lxi d,fcb2 ; source of move
 0108 21D901 lxi h,dfcb ; destination fcb
 010B 1A mfcb: ldax d ; source fcb
 010C 13 inx d ; ready next
 010D 77 mov m,a ; dest fcb
 010E 23 inx h ; ready next
 010F 0D dcr c ; count 16...0
 0110 C20B01 jnz mfcb ; loop 16 times
 ;
 ; name has been removed, zero cr
 0113 AF xra a ; a = 00h
 0114 32F901 sta dfcbcr ; current rec = 0
 ;
 ; source and destination fcb's ready
 0117 115C00 lxi d,sfcb ; source file
 011A CD6901 call open ; error if 255
 011D 118701 lxi d,nofile ; ready message
 0120 3C inr a ; 255 becomes 0
 0121 CC6101 cz finis ; done if no file
 ;
 ; source file open, prep destination
 0124 11D901 lxi d,dfcb ; destination
 0127 CD7301 call delete ; remove if present
 ;
 012A 11D901 lxi d,dfcb ; destination
 012D CD8201 call make ; create the file
 0130 119601 lxi d,nodir ; ready message
 0133 3C inr a ; 255 becomes 0
 0134 CC6101 cz finis ; done if no dir space
 ;
 ; source file open, dest file open
 ; copy until end of file on source
 ;

5.3 A Sample Copy Program CP/M Operating System Manual

5-37

 0137 115C00 copy: lxi d,sfcb ; source
 013A CD7801 call read ; read next record
 013D B7 ora a ; end of file?
 013E C25101 jnz eofile ; skip write if so
 ;
 ; not end of file, write the record
 0141 11D901 lxi d,dfcb ; destination
 0144 CD7D01 call write ; write the record
 0147 11A901 lxi d,space ; ready message
 014A B7 ora a ; 00 if write ok
 014B C46101 cnz finis ; end if so
 014E C33701 jmp copy ; loop until eof
 ;
 eofile: ; end of file, close destination
 0151 11D901 lxi d,dfcb ; destination
 0154 CD6E01 call close ; 255 if error
 0157 21BA01 lxi h,wrprot ; ready message
 015A 3C inr a ; 255 becomes 00
 015B CC6101 cz finis ; shouldn't happen
 ;
 ; copy operation complete, end
 015E 11CB01 lxi d,normal ; ready message
 ;
 finis: ; write message given in de, reboot
 0161 0E09 mvi c,printf
 0163 CD0500 call bdos ; write message
 0166 C30500 jmp bdos ; reboot system
 ;
 ; system interface subroutines
 ; (all return directly from bdos)
 ;
 0169 0E0F open: mvi c,openf
 016B C30500 jmp bdos
 ;
 016E 0E10 close: mvi c,closef
 0170 C30500 jmp bdos
 ;
 0173 0E13 delete: mvi c,deletef
 0175 C30500 jmp bdos
 ;

5.3 A Sample Copy Program CP/M Operating System Manual

5-38

 0178 0E14 read: mvi c,readf
 017A C30500 jmp bdos
 ;
 017D 0E15 write: mvi c,writef
 017F C30500 jmp bdos
 ;
 0182 0E16 make: mvi c,makef
 0184 C30500 jmp bdos
 ;
 ; console messages
 0187 6E6F20736Fnofile: db 'no source file$'
 0196 6E6F206469nodir: db 'no directory space$'
 01A9 6F7574206Fspace: db 'out of dat space$'
 01BA 7772697465wrprot:db 'write protected?$'
 01CB 636F707920normal:db 'copy complete$'
 ;
 ; data areas
 01D9 dfcb: ds 32 ; destination fcb
 01F9 = dfcbcr: equ dfcb+32 ; current record
 ;
 01F9 ds 32 ; 16 level stack
 stack:
 0219 end

Note that there are several simplifications in this particular program. First, there are no checks
for invalid filenames that could contain ambiguous references. This situation could be detected
by scanning the 32-byte default area starting at location 005CH for ASCII question marks. A
check should also be made to ensure that the filenames have been included (check locations
005DH and 006DH for nonblank ASCII characters). Finally, a check should be made to ensure
that the source and destination filenames are different. An improvement in speed could be
obtained by buffering more data on each read operation. One could, for example, determine the
size of memory by fetching FBASE from location 0006H and using the entire remaining portion
of memory for a data buffer. In this case, the programmer simply resets the DMA address to the
next successive 128-byte area before each read. Upon writing to the destination file, the DMA
address is reset to the beginning of the buffer and incremented by 128 bytes to the end as each
record is transferred to the destination file.

5.3 A Sample Copy Program CP/M Operating System Manual

5-39

5.4 A Sample File Dump Utility

The following file dump program is slightly more complex than the simple copy program given
in the previous section. The dump program reads an input file, specified in the CCP command
line, and displays the content of each record in hexadecimal format at the console. Note that the
dump program saves the CCP's stack upon entry, resets the stack to a local area, and restores the
CCP's stack before returning directly to the CCP. Thus, the dump program does not perform and
warm start at the end of processing.

 ; FILE DUMP PROGRAM, READS AN INPUT FILE AND PRINTS IN HEX
 ;
 ; COPYRIGHT (C) 1975, 1976, 1977, 1978
 ; DIGITAL RESEARCH
 ; BOX 579, PACIFIC GROVE
 ; CALIFORNIA, 93950
 ;
 0100 ORG 100H
 0005 = BDOS EQU 0005H ;DOS ENTRY POINT
 0001 = CONS EQU 1 ;READ CONSOLE
 0002 = TYPEF EQU 2 ;TYPE FUNCTION
 0009 = PRINTF EQU 9 ;BUFFER PRINT ENTRY
 000B = BRKF EQU 11 ;BREAK KEY FUNCTION

;(TRUE IF CHAR READY)
 000F = OPENF EQU 15 ;FILE OPEN
 0014 = READF EQU 20 ;READ FUNCTION
 ;
 005C = FCB EQU 5CH ;FILE CONTROL BLOCK ADDRESS
 0080 = BUFF EQU 80H ;INPUT DISK BUFFER ADDRESS
 ;
 ; NON GRAPHIC CHARACTERS
 000D = CR EQU 0DH ;CARRIAGE RETURN
 000A = LF EQU 0AH ;LINE FEED
 ;
 ; FILE CONTROL BLOCK DEFINITIONS
 005C = FCBDNEQU FCB+0 ;DISK NAME
 005D = FCBFN EQU FCB+1 ;FILE NAME
 0065 = FCBFT EQU FCB+9 ;DISK FILE TYPE (3 CHARACTERS)
 0068 = FCBRL EQU FCB+12 ;FILE'S CURRENT REEL NUMBER
 006B = FCBRC EQU FCB+15 ;FILE'S RECORD COUNT (0 TO 128)

5.3 A Sample Copy Program CP/M Operating System Manual

5-40

 007C = FCBCR EQU FCB+32 ;CURRENT (NEXT) RECORD
;NUMBER (0 TO 127)

 007D = FCBLN EQU FCB+33 ;FCB LENGTH
 ;
 ; SET UP STACK
 0100 210000 LXI H,0
 0103 39 DAD SP
 ; ENTRY STACK POINTER IN HL FROM THE CCP
 0104 221502 SHLD OLDSP
 ; SET SP TO LOCAL STACK AREA (RESTORED AT FINIS)
 0107 315702 LXI SP,STKTOP
 ; READ AND PRINT SUCCESSIVE BUFFERS
 010A CDC101 CALL SETUP ;SET UP INPUT FILE
 010D FEFF CPI 255 ;255 IF FILE NOT PRESENT
 010F C21B01 JNZ OPENOK ;SKIP IF OPEN IS OK
 ;
 ; FILE NOT THERE, GIVE ERROR MESSAGE AND RETURN
 0112 11F301 LXI D,OPNMSG
 0115 CD9C01 CALL ERR
 0118 C35101 JMP FINIS ;TO RETURN
 ;
 OPENOK: ;OPEN OPERATION OK, SET BUFFER INDEX TO END
 011B 3E80 MVI A,80H
 011D 321302 STA IBP ;SET BUFFER POINTER TO 80H
 ; HL CONTAINS NEXT ADDRESS TO PRINT
 0120 210000 LXI H,0 ;START WITH 0000
 ;
 GLOOP:
 0123 E5 PUSH H ;SAVE LINE POSITION
 0124 CDA201 CALL GNB
 0127 E1 POP H ;RECALL LINE POSITION
 0128 DA5101 JC FINIS ;CARRY SET BY GNB IF END FILE
 012B 47 MOV B,A
 ; PRINT HEX VALUES
 ; CHECK FOR LINE FOLD
 012C 7D MOV A,L

5.4 A Sample File Dump Utility CP/M Operating System Manual

5-41

 012D E60F ANI 0FH ;CHECK LOW 4 BITS
 012F C24401 JNZ NONUM
 ; PRINT LINE NUMBER
 0132 CD7201 CALL CRLF
 ;
 ; CHECK FOR BREAK KEY
 0135 CD5901 CALL BREAK
 ; ACCUM LSB = 1 IF CHARACTER READY
 0138 0F RRC ;INTO CARRY
 0139 DA5101 JC FINIS ;DON'T PRINT ANY MORE
 ;
 013C 7C MOV A,H
 013D CD8F01 CALL PHEX
 0140 7D MOV A,L
 0141 CD8F01 CALL PHEX
 NONUM:
 0144 23 INX H ;TO NEXT LINE NUMBER
 0145 3E20 MVI A,' '
 0147 CD6501 CALL PCHAR
 014A 78 MOV A,B
 014B CD8F01 CALL PHEX
 014E C32301 JMP GLOOP
 ;
 FINIS:
 ; END OF DUMP, RETURN TO CCP
 ; (NOTE THAT A JMP TO 0000H REBOOTS)
 0151 CD7201 CALL CRLF
 0154 2A1502 LHLD OLDSP
 0157 F9 SPHL
 ; STACK POINTER CONTAINS CCP'S STACK LOCATION
 0158 C9 RET ;TO THE CCP
 ;
 ;
 ; SUBROUTINES
 ;
 BREAK: ;CHECK BREAK KEY (ACTUALLY ANY KEY WILL DO)
 0159 E5D5C5 PUSH H! PUSH D! PUSH B; ENVIRONMENT SAVED
 015C 0E0B MVI C,BRKF

5.4 A Sample File Dump Utility CP/M Operating System Manual

5-42

 015E CD0500 CALL BDOS
 0161 C1D1E1 POP B! POP D! POP H; ENVIRONMENT RESTORED
 0164 C9 RET
 ;
 PCHAR: ;PRINT A CHARACTER
 0165 E5D5C5 PUSH H! PUSH D! PUSH B; SAVED
 0168 0E02 MVI C,TYPEF
 016A 5F MOV E,A
 016B CD0500 CALL BDOS
 016E C1D1E1 POP B! POP D! POP H; RESTORED
 0171 C9 RET
 ;
 CRLF:
 0172 3E0D MVI A,CR
 0174 CD6501 CALL PCHAR
 0177 3E0A MVI A,LF
 0179 CD6501 CALL PCHAR
 017C C9 RET
 ;
 ;
 PNIB: ;PRINT NIBBLE IN REG A
 017D E60F ANI 0FH ;LOW 4 BITS
 017F FE0A CPI 10
 0181 D28901 JNC P10
 ; LESS THAN OR EQUAL TO 9
 0184 C630 ADI '0'
 0186 C38B01 JMP PRN
 ;
 ; GREATER OR EQUAL TO 10
 0189 C637 P10: ADI 'A' - 10
 018B CD6501 PRN: CALL PCHAR
 018E C9 RET
 ;
 PHEX: ;PRINT HEX CHAR IN REG A
 018F F5 PUSH PSW
 0190 0F RRC
 0191 0F RRC
 0192 0F RRC
 0193 0F RRC
 0194 CD7D01 CALL PNIB ;PRINT NIBBLE

5.4 A Sample File Dump Utility CP/M Operating System Manual

5-43

 0197 F1 POP PSW
 0198 CD7D01 CALL PNIB
 019B C9 RET
 ;
 ERR: ;PRINT ERROR MESSAGE
 ; D,E ADDRESSES MESSAGE ENDING WITH "$"
 019C 0E09 MVI C,PRINTF ;PRINT BUFFER FUNCTION
 019E CD0500 CALL BDOS
 01A1 C9 RET
 ;
 ;
 GNB: ;GET NEXT BYTE
 01A2 3A1302 LDA IBP
 01A5 FE80 CPI 80H
 01A7 C2B301 JNZ G0
 ; READ ANOTHER BUFFER
 ;
 ;
 01AA CDCE01 CALL DISKR
 01AD B7 ORA A ;ZERO VALUE IF READ OK
 01AE CAB301 JZ G0 ;FOR ANOTHER BYTE
 ; END OF DATA, RETURN WITH CARRY SET FOR EOF
 01B1 37 STC
 01B2 C9 RET
 ;
 G0: ;READ THE BYTE AT BUFF+REG A
 01B3 5F MOV E,A ;LS BYTE OF BUFFER INDEX
 01B4 1600 MVI D,0 ;DOUBLE PRECISION INDEX TO DE
 01B6 3C INR A ;INDEX=INDEX+1
 01B7 321302 STA IBP ;BACK TO MEMORY
 ; POINTER IS INCREMENTED
 ; SAVE THE CURRENT FILE ADDRESS
 01BA 218000 LXI H,BUFF
 01BD 19 DAD D
 ; ABSOLUTE CHARACTER ADDRESS IS IN HL
 01BE 7E MOV A,M
 ; BYTE IS IN THE ACCUMULATOR
 01BF B7 ORA A ;RESET CARRY BIT
 01C0 C9 RET
 ;

5.4 A Sample File Dump Utility CP/M Operating System Manual

5-44

 SETUP: ;SET UP FILE
 ; OPEN THE FILE FOR INPUT
 01C1 AF XRA A ;ZERO TO ACCUM
 01C2 327C00 STA FCBCR ;CLEAR CURRENT RECORD
 ;
 01C5 115C00 LXI D,FCB
 01C8 0E0F MVI C,OPENF
 01CA CD0500 CALL BDOS
 ; 255 IN ACCUM IF OPEN ERROR
 01CD C9 RET
 ;
 DISKR: ;READ DISK FILE RECORD
 01CE E5D5C5 PUSH H! PUSH D! PUSH B
 01D1 115C00 LXI D,FCB
 01D4 0E14 MVI C,READF
 01D6 CD0500 CALL BDOS
 01D9 C1D1E1 POP B! POP D! POP H
 01DC C9 RET
 ;
 ; FIXED MESSAGE AREA
 01DD 46494C4520SIGNON: DB 'FILE DUMP VERSION 1.4$'
 01F3 0D0A4E4F20OPNMSG: DB CR,LF,'NO INPUT FILE PRESENT ON DISK$'
 ; VARIABLE AREA
 0213 IBP: DS 2 ;INPUT BUFFER POINTER
 0215 OLDSP: DS 2 ;ENTRY SP VALUE FROM CCP
 ; STACK AREA
 0217 DS 64 ;RESERVE 32 LEVEL STACK
 STKTOP:
 ;
 0257 END

5.4 A Sample File Dump Utility CP/M Operating System Manual

5-45

5.5 A Sample Random Access Program

This section concludes with an extensive example of random access operation. The program
listed below performs the simple function of reading or writing random records upon command
from the terminal. When a program has been created, assembled, and placed into a file labeled R
A N D 0 M . C 0 M , the CCP level command

RANDOM X. DAT

starts the test program. The program looks for a file by the name X . DA T and, if found,
proceeds to prompt the console for input. If not found, the file is created before the prompt is
given. Each prompt takes the form

next command?

and is followed by operator input, followed by a carriage return. The input commands take the
form

nWnRQ

where n is an integer value in the range 0 to 65535, and W, R, and Q are simple command
characters corresponding to random write, random read, and quit processing, respectively. If the
W command is issued, the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by a carriage return.
RANDOM then writes the character string into the "', . DA T file at record n. If the R command
is issued, RANDOM reads record number n and displays the string value at the console, If the Q
command is issued, the X . DAT file is closed, and the program returns to the CCP. In the
interest of brevity, the only error message is

error, try again .

The program begins with an initialization section where the input file is opened or created,
followed by a continuous loop at the label ready where the individual commands are interpreted.
The DFBC at 005CH and the default buffer at 0080H are used in all disk operations. The utility
subroutines then follow, which contain the principal input line processor, called readc. This
particular program shows the elements of random access processing, and can be used as the basis
for further program development.

5.4 A Sample File Dump Utility CP/M Operating System Manual

5-46

Sample Random Access Program for CP/M 2.0

 0100 org 100h ; base of tpa
 ;
 0000 = reboot equ 0000h ; system reboot
 0005 = bdos equ 0005h ; bdos entry point
 ;
 0001 = coninp equ 1 ; console input function
 0002 = conout equ 2 ; console output function
 0009 = pstring equ 9 ; print string function
 000A = rstring equ 10 ; read console buffer
 000C = version equ 12 ; retrun version nmber
 000F = openf equ 15 ; file open function
 0010 = closef equ 16 ; close function
 0016 = makef equ 22 ; make file function
 0021 = readr equ 33 ; read random
 0022 = writer equ 34 ; write random
 ;
 005C = fcb equ 005ch ; default file control block
 007D = ranrec equ fcb+33 ; random record position
 007F = ranovf equ fcb+35 ; high order (overflow)
 ; byte
 0080 = buff equ 0080h ; buffer address
 ;
 000D = cr equ 0dh ; carriage return
 000A = lf equ 0ah ; line feed
 ;
 ; load sp, set-up file for random access
 ;
 0100 31B702 lxi sp,stack
 ;
 ; version 2.0
 0103 0E0C mvi c,version
 0105 CD0500 call bdos
 0108 FE20 cpi 20h ; version 2.0 or better?
 010A D21601 jnc versok
 ; bad version, message and go back

5.5 A Sample Random Access Program CP/M Operating System Manual

5-47

 010D 111502 lxi d,badver
 0110 CDD501 call print
 0113 C30000 jmp reboot
 ;
 versok:
 ; correct version for random access
 0116 0E0F mvi c,openf ; open default fcb
 0118 115C00 lxi d,fcb
 011B CD0500 call bdos
 011E 3C inr a ; err 255 becomes zero
 011F C23701 jnz ready
 ;
 ; cannot open file, so create it
 0122 0E16 mvi c,makef
 0124 115C00 lxi d,fcb
 0127 CD0500 call bdos
 012A 3C inr a ; err 255 becomes zero
 012B C23701 jnz ready
 ;
 ; cannot create file, directory full
 012E 113402 lxi d,nospace
 0131 CDD501 call print
 0134 C30000 jmp reboot ; back tp CCP
 ;
 ; loop back to ready after each read command
 ;
 ready:
 ; file is ready for processing
 ;
 0137 CDE001 call readcom ; read next command
 013A 227D00 shld ranrec ; store input record #
 013D 217F00 lxi h,ranovf
 0140 3600 mvi m,0 ; clear high byte if set
 0142 FE51 cpi 'Q' ; Quit?
 0144 C25601 jnz notq
 ; quit processing, close file
 0147 0E10 mvi c,closef
 0149 115C00 lxi d,fcb
 014C CD0500 call bdos

5.5 A Sample Random Access Program CP/M Operating System Manual

5-48

 014F 3C inr a ; err 255 becomes 0
 0150 CAB401 jz error ; error message, retry
 0153 C30000 jmp reboot ; back to ccp
 ;
 ; end of command, process write
 ;
 notq:
 ; not the quit command, random write?
 0156 114702 lxi d,datmsg

 0159 CDD501 call print ; data prompt
 015C 0E7F mvi c,127 ; up to 127 characters
 015E 218000 lxi h,buff ; destination
 rloop: ;read next character to buff
 0161 C5 push b ; save counter
 0162 E5 push h ; next destination
 0163 CDBD01 call getchr ; character to a
 0166 E1 pop h ; restore counter
 0167 C1 pop b ; resore next to fill
 0168 FE0D cpi cr ; end of line?
 016A CA7301 jz erloop
 ; not end, store character
 016D 77 mov m,a
 016E 23 inx h ; next to fill
 016F 0D dcr c ; counter goes down
 0170 C26101 jnz rloop ; end of buffer?
 erloop:
 ; end of read loop, store 00
 0173 3600 mvi m,0
 ;
 ; write the record to selected record number
 0175 0E22 mvi c,writer
 0177 115C00 lxi d,fcb
 017A CD0500 call bdos
 017D B7 ora a ; error code zero?
 017E C2B401 jnz error ; message if not
 0181 C33701 jmp ready ; for another record

5.5 A Sample Random Access Program CP/M Operating System Manual

5-49

 ;
 ; end of write command, process read
 ;
 notw:
 ; not a write command, read record?
 0184 FE52 cpi 'R'
 0186 C2B401 jnz error ; skip if not
 ;
 ; read random record
 0189 0E21 mvi c,readr
 018B 115C00 lxi d,fcb
 018E CD0500 call bdos
 0191 B7 ora a ; return code 00?
 0192 C2B401 jnz error
 ;
 ; read was successful, write to console
 0195 CDCA01 call crlf ; new line
 0198 0E80 mvi c,128 ; max 128 characters
 019A 218000 lxi h,buff ; next to get
 wloop:
 019D 7E mov a,m ; next character
 019E 23 inx h ; next to get
 019F E67F ani 7fh ; mask parity
 01A1 CA3701 jz ready ; for another command if 00
 01A4 C5 push b ; save counter
 01A5 E5 push h ; save next to get
 01A6 FE20 cpi ' ' ; graphic?
 01A8 D4C301 cnc putchr ; skip output if not
 01AB E1 pop h
 01AC C1 pop b
 01AD 0D dcr c ; count=count-1
 01AE C29D01 jnz wloop
 01B1 C33701 jmp ready
 ;
 ; end of read command, all errors end up here
 ;
 error:
 01B4 115402 lxi d,errmsg
 01B7 CDD501 call print
 01BA C33701 jmp ready
 ;

5.5 A Sample Random Access Program CP/M Operating System Manual

5-50

 getchr:
 ; read next console character to a
 01BD 0E01 mvi c,coninp
 01BF CD0500 call bdos
 01C2 C9 ret
 ;
 putchr;
 ; write character from a to console
 01C3 0E02 mvi c,conout
 01C5 5F mov e,a ; char to send
 01C6 CD0500 call bdos ; send char
 01C9 C9 ret
 ;
 crlf:
 ; send carriage return, line feed
 01CA 3E0D mvi a,cr ; carriage return
 01CC CDC301 call putchr
 01CF 3E0A mvi a,lf ; line feed
 01D1 CDC301 call putchr
 01D4 C9 ret
 ;
 print:
 ; print the buffer addressed by de until $
 01D5 D5 push d
 01D6 CDCA01 call crlf
 01D9 D1 pop d ; new line
 01DA 0E09 mvi c,pstring
 01DC CD0500 call bdos ; print the string
 01DF C9 ret
 ;
 readcom:
 ; read the next command line to the conbuf
 01E0 116602 lxi d,prompt
 01E3 CDD501 call print ; command?
 01E6 0E0A mvi c,rstring
 01E8 117502 lxi d,conbuf
 01EB CD0500 call bdos
 ; command line is present, scan it
 01EE 210000 lxi h,0 ; start with 0000
 01F1 117702 lxi d,conlin ; command line

5.5 A Sample Random Access Program CP/M Operating System Manual

5-51

 01F4 1A readc: dax d ; next command character
 01F5 13 inx d ; to next command position
 01F6 B7 ora a ; cannot be end of command
 01F7 C8 rz

 ; not zero, numeric?
 01F8 D630 sui '0'
 01FA FE0A cpi 10 ; carry if numeric
 01FC D20D02 jnc endrd
 ; add-in next digit
 01FF 29 dad h ; *2
 0200 49 mov c,1
 0201 44 mov b,h ; bc - value * 2
 0202 29 dad h ; *4
 0203 09 dad b ; *2 + *8 = *10
 0204 85 add l
 0205 6F mov l,a
 0206 D2F401 jnc readc ; for another char
 0209 24 inr h ; overflow
 020A C3F401 jmp readc ; for another char
 endrd:
 ; end of read, restore value in a
 020D C630 adi '0' ; command
 020F FE61 cpi 'a' ; translate case?
 0211 D8 rc
 ; lower case, mask lower case bits
 0212 E65F ani 101$1111b
 0214 C9 ret
 ;
 ; string data area
 ;
 0215 736F727279badver: db 'sorry, you need cp/m version 2$'
 0234 6E6F206469nospace:db 'no directory space$'
 0247 7479706520datmsg: db 'type datas: $'

5.5 A Sample Random Access Program CP/M Operating System Manual

5-52

 0254 6572726F72errmsg: db 'error, try again.$'
 0266 6E65787420prompt: db 'next command? $'
 ;
 ; fixed and variable data area
 ;
 0275 21 conbuf: db conlen ; length of console buffer
 0276 consiz: ds 1 ; resulting size after read
 0277 conlin: ds 32 ; length 32 buffer
 0021 = conlen equ $-consiz
 ;
 0297 ds 32
 stack:
 02B7 end

Major improvements could be made to this particular program to enhance its operation. In fact,
with some work, this program could evolve into a simple data base management system. One
could, for example, assume a standard record size of 128 bytes, consisting to arbitrary fields
within the record. A program, called GETKEY, could be developed that first reads a sequential
file and extracts a specific field defined by the operator. For example, the command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract the LASTNAME
field from each record, starting in position 10 and ending at character 20. GETKEY builds a table
in memory consisting of each particular LASTNAME field, along with its 16-bit record number
location within the file. The GETKEY program then sorts this list and writes a new file, called
LASTNAME.KEY, which is an alphabetical list of LASTNAME fields with their corresponding
record numbers. This list is called an inverted index in information retrieval parlance.

If the programmer were to rename the program shown above as QUERY and modify it so that it
reads a sorted key file into memory, the command line might appear as

QUERY NAMES.DAT LASTNAME.KEY

5.5 A Sample Random Access Program CP/M Operating System Manual

5-53

Instead of reading a number, the QUERY program reads an alphanumeric string that is a
particular key to find in the N A M E S . D A T data base. Because the L A S T N A M E . K E
Y list is sorted, one can find a particular entry rapidly by performing a binary search, similar to
looking up a name in the telephone book. Starting at both ends of the list, one examines the
entry halfway in between and, if not matched, splits either the upper half or the lower half for the
next search. You will quickly reach the item you are looking for and find the corresponding
record number. You should fetch and display this record at the console, 'ust as was done in the
program shown above.

With some more work, you can allow a fixed grouping size that differs from the 128-byte
record shown above. This is accomplished by keeping track of the record number and the byte
offset within the record. Knowing the group size, you randomly access the record containing the
proper group, offset to the beginning of the group within the record read sequentially until the
group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean expressions, which
compute the set of records that satisfy several relationships, such as a L A S T NAME between
HARDY and LAUREL and an AGE lower than 45. Display all the records that fit this
description. Finally, if your lists are getting too big to fit into memory, randomly access key files
from the disk as well.

5.6 System Function Summary

Function Function Input Output
Number Name

Decimal Hex

0 0 System Reset C = 00H none
I 1 Console Input C = 01H A = ASCII char
2 2 Console Output E = char none
3 3 Reader Input A = ASCII char
4 4 Punch Output E = char none
5 5 List Output E = char none
6 6 Direct Console I/O C = 06H A = char or status

 E = 0FFH (input) or (no value)
 0FEH (status) or
 char (output)

7 7 Get I/O Byte none A = I/O byte value

5.5 A Sample Random Access Program CP/M Operating System Manual

5-54

Function Function Input Output
Number Name

8 8 Set I/O Byte E = I/O byte none
9 9 Print String DE = Buffer Address none
10 A Read Console String DE = Buffer Console

characters
in Buffer

11 B Get Console Status none A = 00/non zero
12 C Return Version # none HL: Version #
13 D Reset Disk System none none
14 E Seelct Disk E = Disk # none
15 F Open File DE = FCB address FF if not found
16 10 Close File DE = FCB address FF if not found
17 11 Search For First DE = FCB address A = Directory

Code
18 12 ASearch For Next none A = Directory

Code
19 13 Delete File DE = FCB address A = none
20 14 Read Sequential DE = FCB address A = Error Code
21 15 Write Sequential DE = FCB Address A= =Error Code
22 16 Make File DE = FCB address A = FF if no DIR

Space
23 17 Rename File DE = FCB address A = FF if not

found
24 18 Return Login Vector none HL = Login

Vector*
25 19 Return Current Disk none A = Current Disk

Number
26 1A Set DMA Address DE = DMA address none
27 1B Get ADDR (ALLOC) none HL = ALLOC

address*
28 1C Write Protect Disk none none
29 1D Get Read/only Vector none HL = ALLOC

address*
30 1E Set File Attributes DE = FCB address A = none
31 1F Get ADDR (Disk Parms) none HL = DPB

address
32 20 Set/Get User Code E = 0FFH for Get User Number

E = 00 to 0FH for Set
33 21 Read Random DE = FCB address A = none

5.5 A Sample Random Access Program CP/M Operating System Manual

5-55

Function Function Input Output
Number Name

34 22 Write Random DE = FCB address A = error Code
35 23 Compute File SIze DE = FCB address r0, r1, r2
36 24 Set Random Record DE = FCB address r0, r1, r2
37 25 Reset Drive DE = Drive Vector A = 0
38 26 Access Drive not supported
39 27 Free Drive not supported
40 28 Write Random w/Fill DE = FCB A = error code

*Note that A=L, and B=H upon return.

End of Section 5

5.5 System Function Summary CP/M Operating System Manual

5-56

Section 6
CP/M 2 Alteration

6.1 Introduction

The standard CP/M system assumes operation on an Intel MDS-800 microcomputer development
system, but is designed so you can alter a specific set of subroutines that define the hardware
operating environment.

 Although standard CP/M 2 is configured for single-density floppy disks, field alteration features
allow adaptation to a wide variety of disk subsystems from single drive minidisks to
high-capacity, hard disk systems. To simplify the following adaptation process, it is assumed that
CP/M 2 is first configured for single-density floppy disks where minimal editing and debugging
tools are available. If an earlier version of CP/M is available, the customizing process is eased
considerably. In this latter case, you might want to review the system generation process and skip
to later sections that discuss system alteration for nonstandard disk systems.

To achieve device independence, CP/M is separated into three distinct modules:

 -BIOS is the Basic I/O System, which is environment dependent.

 -BDOS is the Basic Disk Operating System, which is not dependent upon the hardware
 configuration.

 -CCP is the Console Command Processor, which uses the BDOS.

Of these modules, only the BIOS is dependent upon the particular hardware. You can patch the
distribution version of CP/M to provide a new BIOS that provides a customized interface
between the remaining CP/M modules and the hardware system. This document provides a
step-by-step procedure for patching a new BIOS into CP/M.

All disk-dependent portions of CP/M 2 are placed into a BIOS, a resident disk parameter block,
which is either hand coded or produced automatically using the disk definition macro library
provided with CP/M 2. The end user need only specify the maximum number of active disks, the
starting and ending sector numbers, the data allocation size, the maximum extent of the logical
disk, directory size information, and reserved track values. The macros use this information to
generate the appropriate tables and table references for use during CP/M 2 operation. Deblocking
information is provided, which aids in assembly or disassembly of sector sizes that are multiples
of the fundamental 128-byte data unit, and the system alteration manual includes general purpose
subroutines that use the deblocking information to take advantage of larger sector sizes. Use of
these subroutines, together with the table-drive data access algorithms, makes CP/M 2 a
universal data management system.

5.5 System Function Summary CP/M Operating System Manual

6-1

File expansion is achieved by providing up to 512 logical file extents, where each logical extent
contains 16K bytes of data. CP/M 2 is structured, however, so that as much as 128K bytes of
data are addressed by a single physical extent, corresponding to a single directory entry,
iuaintaining compatibility with previous versions while taking advantage of directory space.

If CP/M is being tailored to a computer system for the first time, the new BIOS requires some
simple software development and testing. The standard BIOS is listed in Appendix A and can be
used as a model for the customized package. A skeletal version of the BIOS given in Appendix B
can serve as the basis for a modified BIOS.

In addition to the BIOS, you must write a simple memory loader, called GETSYS, which brings
the operating system into memory. To patch the new BIOS into CP/M, you must write the
reverse of GETSYS, called PUTSYS, which places an altered version of CP/M back onto the
disk. PUTSYS can be derived from GETSYS by changing the disk read commands into disk
write commands. Sample skeletal GETSYS and PUTSYS programs are described in Section 6.4
and listed in Appendix C.

To make the CP/M system load automatically, you must also supply a cold start loader, similar to
the one provided with CP/M, listed in Appendixes A and D. A skeletal form of a cold start loader
is given in Appendix E, which serves as a model for the loader.

6.1 Introduction CP/M Operating System Manual

6-2

6.2 First-level System Regeneration

The procedure to patch the CP/M system is given below. Address references in each step are
shown with H denoting the hexadecimal radix, and are given for a 20K CP/M system. For larger
CP/M systems, a bias is added to each address that is shown with a +b following it, where b is
equal to the memory size-20K. Values for b in various standard memory sizes are listed in Table
6-1.

 Table 6-1. Standard Memory Size Values

 Memory Size Value

 24K: b = 24K - 20K = 4K = 1000H
 32K: b = 32K - 20K = 12K = 3000H
 40K: b = 40K - 20K = 20K = 5000H
 48K: b = 48K - 20K = 28K = 7000H
 56K: b = 56K - 20K = 36K = 9000H
 62K: b = 62K - 20K = 42K = A800H
 64K: b = 64K - 20K = 44K = B000H

Note that the standard distribution version of CP/M is set for operation within a 20K CP/M
system. Therefore, you must first bring up the 20K CP/M system, then configure it for actual
memory size (see Section 6.3).

Follow these steps to patch your CP/M system:

 1. Read Section 6.4 and write a GETSYS program that reads the first two tracks of a disk
into memory. The program from the disk must be loaded starting at location 3380H.
GETSYS is coded to start at location 100H (base of the TPA) as shown in Appendix C.

 2. Test the GETSYS program by reading a blank disk into memory, and check to see that
the data has been read properly and that the disk has not been altered in any way by the

GETSYS program.

6.1 Introduction CP/M Operating System Manual

6-3

 3. Run the GETSYS program using an initialized CP/M disk to see if GETSYS loads CP/M
starting at 3380H (the operating system actually starts 128 bytes later at 3400H).

 4. Read Section 6.4 and write the PUTSYS program. This writes memory starting at 3380H

back onto the first two tracks of the disk. The PUTSYS program should be located at
200H, as shown in Appendix C.

 5. Test the PUTSYS program using a blank, uninitialized disk by writing a portion of

memory to the first two tracks; clear memory and read it back using GETSYS.
Test PUTSYS completely, because this program will be used to alter CP/M on disk.

 6. Study Sections 6.5, 6.6, and 6.7 along with the distribution version of the BIOS given in
Appendix A and write a simple version that performs a similar function for the

customized environment. Use the program given in Appendix B as a model. Call this new
BIOS by name CBIOS (customized BIOS). Implement only the primitive disk
operations on a single drive and simple console input/output functions in this
phase.

 7. Test CBIOS completely to ensure that it properly performs console character I/O and disk
reads and writes. Be careful to ensure that no disk write operations occur during read
operations and check that the proper track and sectors are addressed on all reads and
writes. Failure to make these checks might cause destruction of the initialized CP/M
system after it is patched.

 8. Referring to Table 6-3 in Section 6.5, note that the BIOS is placed between locations
4A00H and 4FFFH. Read the CP/M system using GETSYS and replace the BIOS
segment by the CBIOS developed in step 6 and tested in step 7. This replacement is done
in memory.

 9. Use PUTSYS to place the patched memory image of CP/M onto the first two tracks of a
blank disk for testing.

 10. Use GETSYS to bring the copied memory image from the test disk back into memory at
3380H and check to ensure that it has loaded back properly (clear memory, 1 if possible,
before the load). Upon successful load, branch to the cold start code at location 4A00H.
The cold start routine initializes page zero, then jumps to the CCP at location 3400H,
which calls the BDOS, which calls the CBIOS. The CCP asks the CBIOS to read sixteen
sectors on track 2, and CP/M types A>, the system prompt.

If difficulties are encountered, use whatever debug facilities are available to trace and
breakpoint the CBIOS.

6.2 First-level Regeneration CP/M Operating System Manual

6-4

 11. Upon completion of step 10, CP/M has prompted the console for a command input. To
test the disk write operation, type
SAVE 1 X.COM
All commands must be followed by a carriage return. CP/M responds with another

prompt after several disk accesses:
A>
If it does not, debug the disk write functions and retry.

 12. Test the directory command by typing
DIR
CP/M responds with
A:X COM

 13. Test the erase command by typing
ERA X.COM
CP/M responds with the A prompt. This is now an operational system that only requires a

bootstrap loader to function completely.

 14. Write a bootstrap loader that is similar to GETSYS and place it on track 0, sector 1, using
PUTSYS (again using the test disk, not the distribution disk). See Sections 6.5 and 6.8 for
more information on the bootstrap operation.

 15. Retest the new test disk with the bootstrap loader installed by executing steps 11, 12, and
13. Upon completion of these tests, type a CTRL-C. The system executes a warm start,
which reboots the system, and types the A prompt.

 16. At this point, there is probably a good version of the customized CP/M system on the test
disk. Use GETSYS to load CP/M from the test disk. Remove the test disk, place the
distribution disk, or a legal copy, into the drive, and use PUTSYS to replace the
distribution version with the customized version. Do not make this replacement if you are

unsure of the patch because this step destroys the system that was obtained from
Digital Research.

 17. Load the modified CP/M system and test it by typing

DIR

CP/M responds with a list of files that are provided on the initialized disk. The file
DDT.COM is the memory image for the debugger. Note that from now on, you

must always reboot the CP/M system (CTRL-C is sufficient) when the disk is removed
and replaced by another disk, unless the new disk is to be Read-Only.

6.2 First-level Regeneration CP/M Operating System Manual

6-5

 18. Load and test the debugger by typing

DDT

See Section 4 for operating procedures.

 19. Before making further CBIOS modifications, practice using the editor (see Section 2),
and assembler (see Section 3). Recode and test the GETSYS, PUTSYS, and CBIOS

programs using ED, ASM, and DDT. Code and test a COPY program that does a
sector-to-sector copy from one disk to another to obtain back-up copies of the original
disk. Read the CP/M Licensing Agreement specifying legal responsibilities when copying

the CP/M system. Place the following copyright notice:

Copyright (c), 1983
Digital Research

on each copy that is made with the COPY program.

 20. Modify the CBIOS to include the extra functions for punches, readers, and sign-on
messages, and add the facilities for additional disk drives, if desired. These changes can

be made with the GETSYS and PUTSYS programs or by referring to the
regeneration process in Section 6.3.

You should now have a good copy of the customized CP/M system. Although the CBIOS
portion of CP/M belongs to the user, the modified version cannot be legally copied.

It should be noted that the system remains file-compatible with all other CP/M systems
(assuming media compatibility) which allows transfer of nonproprietary software between CP/M
users.

6.3 Second-level System Generation

Once the system is running, the next step is to configure CP/M for the desired memory size.
Usually, a memory image is first produced with the MOVCPM program (system relocator) and
then placed into a named disk file. The disk file can then be loaded, examined, patched, and
replaced using the debugger and the system generation program (refer to Section 1).

The CBIOS and BOOT are modified using ED and assembled using ASM, producing files called
CBIOS.HEX and BOOT.HEX, which contain the code for CBIOS and BOOT in Intel hex
format.

6.2 First-level Regeneration CP/M Operating System Manual

6-6

To get the memory image of CP/M into the TPA configured for the desired memorv size, type
the command:

MOVCPM xx*

where xx is the memory size in decimal K bytes, for example, 32 for 32K. The response is as
follows:

CONSTRUCTING xxK CP/M VERS 2.0

READY FOR "SYSGEN" OR

"SAVE 34 CPMxx.COM"

An image of CP/M in the TPA is configured for the requested memory size. The memory image
is at location 0900H through 227FH, that is, the BOOT is at 0900H, the CCP is at 980H, the
BDOS starts at 1180H, and the BIOS is at 1F80H. Note that the memory image has the standard
MDS-800 BIOS and BOOT on it. It is now necessary to save the memory image in a file so that
you can patch the CBIOS and CBOOT into it:

SAVE 34 CPMxx.COM

The memory image created by the MOVCPM program is offset by a negative bias so that it loads
into the free area of the TPA, and thus does not interfere with the operation of CP/M in higher
memory. This memory image can be subsequently loaded under DDT and examined or changed
in preparation for a new generation of the system. DDT is loaded with the memory image by
typing:

DDT CPMxx.COM Loads DDT, then reads the CP/M image.

DDT should respond with the following:

NEXT PC
2300 0100
- (The DDT prompt)

You can then give the display and disassembly commands to examine portions of the memory
image between 900H and 227FH. Note, however, that to find any particular address within the
memory image, you must apply the negative bias to the CP/M address to find the actual address.
Track 00, sector 01, is loaded to location 900H (the user should find the cold start loader at 900H
to 97FH); track 00, sector 02, is loaded into 980H (this is the base of the CCP); and so on
through the entire CP/M system load. In a 20K system, for example, the CCP resides at the CP/M
address 3400H, but is placed into memory at 980H by the SYSGEN program. Thus, the negative
bias, denoted by n, satisfies

6.2 First-level Regeneration CP/M Operating System Manual

6-7

3400H + n = 980H, or n = 980H - 3400H

Assuming two's complement arithmetic, n = D580H, which can be checked by

3400H+D580H = 10980H = 0980H (ignoring high-order overflow).

 Note that for larger systems, n satisfies

(3400H + b) + n = 980H, or
n = 980H - (3400H + b), or
n = D580H - b

The value of n for common CP/M systems is given below.

 Table 6-2. Common Values for CP/M Systems

 Memory Size BIAS b Negative Offset n
 20K 0000H D580H - 0000H = D580H
 24K 1000H D580H - 1000H = C580H
 32K 3000H D580H - 3000H = A580H
 40K 5000H D580H - 5000H = 8580H
 48K 7000H D580H - 7000H = 6580H
 56K 9000H D580H - 9000H = 4580H
 62K A800H D580H - A800H = 2D80H
 64K B000H D580H - B000H = 2580H

6.3 Second-level Regeneration CP/M Operating System Manual

6-8

If you want to locate the address x within the memory image loaded under DDT in a 20K
systei-n, first type

Hx,n Hexadecimal sum and difference

and DDT responds with the value of x + n (sum) and x - n (difference). The first number printed
by DDT is the actual memory address in the image where the data or code is located. For
example, the following DDT command:

H3400,D580

produces 980H as the sum, which is where the CCP is located in the memory image under DDT.

Type the L command to disassemble portions of the BIOS located at (4A00H + b) - n, which,
when one uses the H command, produces an actual address of 1F80H. The disassembly
command would thus be as follows:

L1F80

It is now necessary to patch in the CBOOT and CBIOS routines. The BOOT resides at location
0900H in the memory image. If the actual load address is n, then to calculate the bias (in), type
the command:

H900,n Subtract load address from target address.

The second number typed by DDT in response to the command is the desired bias (in). For
example, if the BOOT executes at 0080H, the command

H900,80

produces

0980 0880 Sum and difference in hex.

Therefore, the bias in would be 0880H. To read-in the BOOT, give the command:

ICBOOT.HEX Input file CBOOT.HEX

Then

Rm Read CBOOT with a bias of in (= 900H - n).

6.3 Second-level Regeneration CP/M Operating System Manual

6-9

Examine the CBOOT with

L900

You are now ready to replace the CBIOS by examining the area at 1F80H, where the original
version of the CBIOS resides, and then typing

ICBIOS.HEX Ready the hex file for loading.

Assume that the CBIOS is being integrated into a 20K CP/M system and thus originates at
location 4A00H. To locate the CBIOS properly in the memory image under DDT, you must
apply the negative bias n for a 20K system when loading the hex file. This is accomplished by
typing

RD580 Read the file with bias D580H.

Upon completion of the read, reexamine the area where the CBIOS has been loaded (use an
L1F80 command) to ensure that it is properly loaded. When you are satisfied that the change has
been made, return from DDT using a CTRL-C or, G0 command.

SYSGEN is used to replace the patched memory image back onto a disk (you use a test disk until
sure of the patch) as shown in the following interaction:

SYSGEN Start the SYSGEN program.

SYSGEN VERSION 2.0 Sign-on message from SYSGEN.

SOURCE DRIVE NAME Respond with a carriage return to skip the
(OR RETURN TO SKIP) CP/M read operation because the system is

already in memory.

DESTINATION DRIVE NAME Respond with B to write the new system
(OR RETURN TO REBOOT) to the disk in drive B.

DESTINATION ON B Place a scratch disk in drive B, then press
THEN TYPE RETURN RETURN.

FUNCTION COMPLETE
DESTINATION DRIVE NAME
(OR RETURN TO REBOOT)

6.3 Second-level Regeneration CP/M Operating System Manual

6-10

The following program provides a framework for the GETSYS and PUTSYS programs
referenced in Sections 6.1 and 6.2. To read and write the specific sectors, you must insert the
READSEC and WRITESEC subroutines.

; GETSYS PROGRAM -- READ TRACKS 0 AND 1 TO MEMORY AT 3380H
; REGISTER USE

; A (SCRATCH REGISTER)

; B TRACK COUNT (O, 1)

; C SECTOR COUNT (1,2,...,26)

; DE (SCRATCH REGISTER PAIR)

; HL LOAD ADDRESS

; SP SET TO STACK ADDRESS
START: LXI SP,3380H ; SET STACK POINTER TO SCRATCH
 ; AREA
 LXI H,3380H ; SET BASE LOAD ADDRESS
 MVI B,0 ; START WITH TRACK 0
RDTRK: ; READ NEXT TRACK (INITIALLY 0)
 MVI C,1 ; READ STARTING WITH SECTOR 1

Place the scratch disk in drive A, then perform a cold start to bring up the newlyconfigured CP/M
system.

The new CP/M system is then tested and the Digital Research copyright notice is placed on the
disk, as specified in the Licensing Agreement:

Copyright (c), 1979
Digital Research

6.4 Sample GETSYS and PUTSYS Programs

6.3 Second-level Regeneration CP/M Operating System Manual

6-11

RDSEC: ; READ NEXT SECTOR
 CALL RDSEC ; USER SUPPLIED SUBROUTINE
 LXI D,128 ; MOVE LOAD ADDRESS TO NEXT 1/2
 ; PAGE
 DAD D ; HL = HL + 128
 INR C ; SECTOR = SECTOR + 1
 MOV A,C ; CHECK FOR END OF TRACK
 CPI 27
 JC RDSEC ; CARRY GENERATED IF SECTOR <27

;
; ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
 INR B
 MOV A,B ; TEST FOR LAST TRACK
 CPI 2
 JC RDTRK ; CARRY GENERATED IF TRACK <2

;
; USER SUPPLIED SUBROUTINE TO READ THE DISK
READSEC:
; ENTER WITH TRACK NUMBER IN REGISTER B,
; SECTOR NUMBER IN REGISTER C,
; AND ADDRESS TO FILL IN HL

;
 PUSH B ; SAVE B AND C REGISTERS
 PUSH H ; SAVE HL REGISTERS

 PERFORM DISK READ AT THIS POINT, BRANCH TO
 LABEL "START" IF AN ERROR OCCURS

 POP H ; RECOVER HL
 POP B ; RECOVER B AND C REGISTERS
 RET ; BACK TO MAIN PROGRAM

 END START

 Listing 6-1. GETSYS Program

6.4 Sample GETSYS and PUTSYS CP/M Operating System Manual

6-12

The sector allocation for the standard distribution version of CP/M is given here for reference
purposes. The first sector contains an optional software boot section (see the table on the
following page). Disk controllers are often set up to bring track 0, sector 1, into memory at a
specific location, often location 0000H. The program in this sector, called BOOT, has the
responsibility of bringing the remaining sectors into memory starting at location 3400H + b. If
the controller does not have a built-in sector load, the program in track 0, sector 1 can be ignored.
In this case, load the program from track 0, sector 2, to location 3400H + b.

As an example, the Intel MDS-800 hardware cold start loader brings track 0, sector 1, into
absolute address 3000H. Upon loading this sector, control transfers to location 3000H, where the
bootstrap operation commences by loading the remainder of track 0 and all of track 1 into
memory, starting at 3400H + b. Note that this bootstrap loader is of little use in a non-MDS
environment, although it is useful to examine it because some of the boot actions will have to be
duplicated in the user's cold start loader.

This program is assembled and listed in Appendix B for reference purposes, with an assumed
origin of 100H. The hexadecimal operation codes that are listed on the left might be useful if the
program has to be entered through the panel switches.

The PUTSYS program can be constructed from GETSYS by changing only a few operations in
the GETSYS program given above, as shown in Appendix C. The register pair HL becomes the
dump address, next address to write, and operations on these registers do not change within the
program. The READSEC subroutine is replaced by a WRITESEC subroutine, which performs
the opposite function; data from address HL is written to the track given by register B and sector
given by register C. It is often useful to combine GETSYS and PUTSYS into a single program
during the test and development phase, as shown in Appendix C.

6.5 Disk Organization

6.4 Sample GETSYS and PUTSYS CP/M Operating System Manual

6-13

Table 6-3. CP/M Disk Sector Allocation

 Track Sector Page # Memory Address CP/M Module name

 00 01 (boot address) Cold Start Loader
 00 02 00 3400H + b CCP
 ' 03 ' 3480H + b
 ' 04 01 3500H + b
 ' 05 ' 3580H + b
 ' 06 02 3600H + b
 ' 07 ' 3680H + b
 ' 08 03 3700H + b
 ' 09 ' 3780H + b
 ' 10 04 3800H + b
 ' 11 ' 3880H + b
 ' 12 05 3900H + b
 ' 13 ' 3980H + b
 ' 14 06 3A00H + b
 ' 15 ' 3A80H + b
 ' 16 07 3B00H + b
 00 17 ' 3B80H + b CCP
 00 18 08 3C00H + b BDOS
 ' 19 ' 3C80H + b
 ' 20 09 3D00H + b
 ' 21 ' 3D80H + b
 ' 22 10 3E00H + b
 ' 23 ' 3E80H + b
 ' 24 11 3F00H + b
 ' 25 ' 3F80H + b
 ' 26 12 4000H + b
 01 01 ' 4080H + b
 ' 02 13 4100H + b
 ' 03 ' 4180H + b
 ' 04 14 4200H + b
 ' 05 ' 4280H + b
 ' 06 15 4300H + b
 ' 07 ' 4380H + b
 ' 08 16 4400H + b
 ' 09 ' 4480H + b
 ' 10 17 4500H + b
 ' 11 ' 4580H + b
 ' 12 18 4600H + b
 ' 13 ' 4680H + b
 ' 14 19 4700H + b
 ' 15 ' 4780H + b

6.5 Disk Organization CP/M Operating System Manual

6-14

The entry points into the BIOS from the cold start loader and BDOS are detailed below. Entry to
the BIOS is through a jump vector located at 4A00H + b, as shown below. See Appendixes A
and B. The jump vector is a sequence of 17 jump instructions that send program control to the
individual BIOS subroutines. The BIOS subroutines might be empty for certain functions (they
might contain a single RET operation) during reconfiguration of CP/M, but the entries must be
present in the jump vector.

The jump vector at 4A00H + b takes the form shown below, where the individual jump addresses
are given to the left:

4A00H+b JMP BOOT ;ARRIVE HERE FROM COLD START LOAD

4A03H+b JMP WBOOT ;ARRIVE HERE FOR WARM START

4A06H+b JMP CONST ;CHECK FOR CONSOLE CHAR READY

Table 6-3. CP/M Disk Sector Allocation

 Track Sector Page # Memory Address CP/M Module name

 ' 16 20 4800H + b
 ' 17 ' 4880H + b
 ' 18 21 4900H + b
 01 19 ' 4980H + b BDOS
 07 20 22 4A00H + b BIOS
 ' 21 ' 4A80H + b
 ' 22 23 4B00H + b
 ' 23 ' 4B80H + b
 ' 24 24 4C00H + b
 01 25 ' 4C80H + b BIOS
 01 26 25 4D00H + b BIOS
 02-76 01-26 (directory and data)

6.6 The BIOS Entry Points

6.5 Disk Organization CP/M Operating System Manual

6-15

4A09H+b JMP CONIN ;READ CONSOLE CHARACTER IN

4A0CH+b JMP CONOUT ;WRITE CONSOLE CHARACTER OUT

4A0FH+b JMP LIST ;WRITE LISTING CHARACTER OUT

4A12H+b JMP PUNCH ;WRITE CHARACTER TO PUNCH DEVICE

4A15H+b JMP READER ;READ READER DEVICE

4A18H+b JMP HOME ;MOVE TO TRACK 00 ON SELECTED DISK

4A1BH+b JMP SELDSK ;SELECT DISK DRIVE

4A1EH+b JMP SETTRK ;SET TRACK NUMBER

4A21H+b JMP SETSEC ;SET SECTOR NUMBER

4A24H+b JMP SETDMA ;SET DMA ADDRESS

4A27H+b JMP READ ;READ SELECTED SECTOR

4A2AH+b JMP WRITE ;WRITE SELECTED SECTOR

4A2DH+b JMP LISTST ;RETURN LIST STATUS

4A30H+b JMP SECTRAN ;SECTOR TRANSLATE SUBROUTINE

Listing 6-2. BIOS Entry Points

Each jump address corresponds to a particular subroutine that performs the specific function, as
outlined below. There are three major divisions in the jump table: the system reinitialization,
which results from calls on BOOT and WBOOT; simple character I/O, performed by calls on
CONST, CONIN, CONOUT, LIST, PUNCH, READER, and LISTST; and disk I/O, performed
by calls on HOME, SELDSK, SETTRK, SETSEC, SETDMA, READ, WRITE, and SECTRAN.

6.6 BIOS Entry Points CP/M Operating System Manual

6-16

All simple character I/O operations are assumed to be performed in ASCII, upper- and
lower-case, with high-order (parity bit) set to zero. An end-of-file condition for an input device is
given by an ASCII CTRL-Z (1AH). Peripheral devices are seen by CP/M as logical devices and
are assigned to physical devices within the BIOS.

To operate, the BDOS needs only the CONST, CONIN, and CONOUT subroutines. LIST,
PUNCH, and READER can be used by PIP, but not the BDOS. Further, the LISTST entry is
currently used only by DESPOOL, the print spooling utility. Thus, the initial version of CBIOS
can have empty subroutines for the remaining ASCII devices.

The following list describes the characteristics of each
device.

 -CONSOLE is the principal interactive console that communicates with the operator and
it is accessed through CONST, CONIN, and CONOUT. Typically, the CONSOLE is a

 device such as a CRT or teletype.

 -LIST is the principal listing device. If it exists on the user's system, it is usually a
 hard-copy device, such as a printer or teletype.

 -PUNCH is the principal tape punching device. If it exists, it is normally a high-speed
 paper tape punch or teletype.

 -READER is the principal tape reading device, such as a simple optical reader or teletype.

A single peripheral can be assigned as the LIST, PUNCH, and READER device simultaneously.
If no peripheral device is assigned as the LIST, PUNCH, or READER device, the CBIOS gives
an appropriate error message so that the system does not hang if the device is accessed by PIP or
some other user program. Alternately, the PUNCH and LIST routines can)'ust simply return,
and the READER routine can return with a 1 AH (CTRL-Z) in register A to indicate immediate
end-of-file.

For added flexibility, you can optionally implement the IOBYTE function, which allows
reassignment of physical devices. The IOBYTE function creates a mapping of logical-to-physical
devices that can be altered during CP/M processing, see the STAT command in Section 1.6.1.

6.6 BIOS Entry Points CP/M Operating System Manual

6-17

The definition of the IOBYTE function corresponds to the Intel standard as follows: a single
location in memory, currently location 0003H, is maintained, called IOBYTE, which defines the
logical-to-physical device mapping that is in effect at a particular time. The mapping is
performed by splitting the IOBYTE into four distinct fields of two bits each, called the
CONSOLE, READER, PUNCH, and LIST fields, as shown in the following figure.

 MOST SIGNIFICANT LEAST SIGNIFICANT

IOBYTE AT 003H LIST PUNCH READER CONSOLE

 BITS 6,7 BITS 4,5 BITS 2,3 BITS 0,1

 Figure 6-1. IOBYTE Fields

The value in each field can be in the range 0-3, defining the assigned source or destination of
each logical device. Table 6-4 gives the values that can be assigned to each field.

Table 6-4. IOBYTE Field Values

 Value Meaning

 CONSOLE field (bits 0,I)

 0 console is assigned to the console printer device (TTY:)
 1 console is assigned to the CRT device (CRT:)
 2 batch mode: use the READER as the CONSOLE input, and the LIST device as

the CONSOLE output (BAT:)
 3 user-defined console device (UCI:)

 READER field (bits 2,3)

 0 READER is the teletype device (TTY:)
 1 READER is the high speed reader device (PTR:)
 2 user-defined reader #1 (UR1:)
 3 user-defined reader #2 (UR2:)

6.6 BIOS Entry Points CP/M Operating System Manual

6-18

Table 6-4. (continued)

 Value Meaning

 PUNCH field (bits 4,5)

 0 PUNCH is the teletype device (TTY:)
 1 PUNCH is the high speed punch device (PTP:)
 2 user-defined punch #1 (UPI:)
 3 user-defined punch #2 (UP2:)

 LIST field (bits 6,7)

 0 LIST is the teletype device (TTY:)
 1 LIST is the CRT device (CRT:)
 2 LIST is the line printer device (LPT:)
 3 user-defined list device (UL1:)

The implementation of the IOBYTE is optional and effects only the organization of the CBIOS.
No CP/M systems use the IOBYTE (although they tolerate the existence of the IOBYTE at
location 0003H) except for PIP, which allows access to the physical devices, and STAT, which
allows logical-physical assignments to be made or displayed. For more information see Section
1. In any case the IOBYTE implementation should be omitted until the basic CBIOS is fully
implemented and tested; then you should add the IOBYTE to increase the facilities.

Disk I/O is always performed through a sequence of calls on the various disk access subroutines
that set up the disk number to access, the track and sector on a particular disk, and the Direct
Memory Access (DMA) address involved in the I/O operation. After all these parameters have
been set up, a call is made to the READ or WRITE function to perform the actual I/O operation.

There is often a single call to SELDSK to select a disk drive, followed by a number of read or
write operations to the selected disk before selecting another drive for subsequent operations.
Similarly, there might be a single call to set the DMA address, followed by several calls that read
or write from the selected DMA address before the DMA address is changed. The track and
sector subroutines are always called before the READ or WRITE operations are performed.

6.6 BIOS Entry Points CP/M Operating System Manual

6-19

The READ and WRITE routines should perform several retries (10 is standard) before reporting
the error condition to the BDOS. If the error condition is returned to the BDOS, it reports the
error to the user. The HOME subroutine might or might not actually perform the track 00 seek,
depending upon controller characteristics; the important point is that track 00 has been selected
for the next operation and is often treated in exactly the same manner as SETTRK with a
parameter of 00.

The following table describes the exact responsibilities of each BIOS entry point subroutine.

Table 6-5. BIOS Entry Points

 Entry Point Function

 BOOT The BOOT entry point gets control from the cold start loader and is
responsible for basic system initialization, including sending a sign-on
message, which can be omitted in the first version. If the IOBYTE

function is implemented, it must be set at this point. The various system
parameters that are set by the WBOOT entry point must be initialized,
and control is transferred to the CCP at 3400 + b for further processing.
Note that register C must be set to zero to select drive A.

 WBOOT The WBOOT entry point gets control when a warm start occurs. A warm
start is performed whenever a user program branches to location 0000H, or
when the CPU is reset from the front panel. The CP/M system must be
loaded from the first two tracks of drive A up to, but not including, the
BIOS, or CBIOS, if the user has completed the patch. System parameters
must be initialized as follows:

 location 0,1,2 Set to JMP WBOOT for warm starts
(000H: JMP 4A03H + b)

 location 3 Set initial value of IOBYTE, if implemented in the
CBIOS

 location 4 High nibble = current user no; low nibble current
drive

6.6 BIOS Entry Points CP/M Operating System Manual

6-20

Table 6-5. (continued)

 Entry Point Function

 location 5,6,7 Set to JMP BDOS, which is the primary entry point
to CP/M for transient programs. (0005H: JMP
3C06H + b)

Refer to Section 6.9 for complete details of page zero use. Upon
completion of the initialization, the WBOOT program must branch to the
CCP at 3400H + b to restart the system. Upon entry to the CCP, register C

is set to the drive to select after system initialization. The WBOOT routine
should read location 4 in memory, verify that is a legal drive, and pass it to

the CCP in register C.

 CONST You should sample the status of the currently assigned console device and
return 0FFH in register A if a character is ready to read and 00H in register
A if no console characters are ready.

 CONIN The next console character is read into register A, and the parity bit is set,
high-order bit, to zero. If no console character is ready, wait until a
character is typed before returning.

 CONOUT The character is sent from register C to the console output device. The
character is in ASCII, with high-order parity bit set to zero. You might
want to include a time-out on a line-feed or carriage return, if the console
device requires some time interval at the end of the line (such as a TI

Silent 700 terminal). You can filter out control characters that cause the console
device to react in a strange way (CTRL-Z causes the Lear-Siegler terminal
to clear the screen, for example).

 LIST The character is sent from register C to the currently assigned listing
device. The character is in ASCII with zero parity bit.

 PUNCH The character is sent from register C to the currently assigned punch
device. The character is in ASCII with zero parity.

 READER The next character is read from the currently assigned reader device into
register A with zero parity (high-order bit must be zero); an end-of-file
condition is reported by returning an ASCII CTRL-Z(1AH).

6.6 BIOS Entry Points CP/M Operating System Manual

6-21

Table 6-5. (continued)

 Entry Point Function

 HOME The disk head of the currently selected disk (initially disk A) is moved to
the track 00 position. If the controller allows access to the track 0 flag
from the drive, the head is stepped until the track 0 flag is detected. If the
controller does not support this feature, the HOME call is translated into a
call to SETTRK with a parameter of 0.

 SELDSK The disk drive given by register C is selected for further operations, where
register C contains 0 for drive A, 1 for drive B, and so on up to 15 for
drive P (the standard CP/M distribution version supports four drives). On
each disk select, SELDSK must return in HL the base address of a 16-byte
area, called the Disk Parameter Header, described in Section 6.10. For
standard floppy disk drives, the contents of the header and associated
tables do not change; thus, the program segment included in the sample
CBIOS performs this operation automatically.

If there is an attempt to select a nonexistent drive, SELDSK returns HL =
0000H as an error indicator. Although SELDSK must return the header
address on each call, it is advisable to postpone the physical disk select
operation until an I/O function (seek, read, or write) is actually performed,
because disk selects often occur without ultimately performing any disk
I/O, , and many controllers unload the head of the current disk before
selecting the new drive. This causes an excessive amount of noise and disk

wear. The least significant bit of register E is zero if this is the first
occurrence of the drive select since the last cold or warm start.

 SETTRK Register BC contains the track number for subsequent disk accesses on the
currently selected drive. The sector number in BC is the same as

the number returned from the SECTRAN entry point. You can choose
to seek the selected track at this time or delay the seek until the
next read or write actually occurs. Register BC can take on values in
the range 0-76 corresponding to valid track numbers for
standard floppy disk drives and 0-65535 for nonstandard disk
subsystems.

6.6 BIOS Entry Points CP/M Operating System Manual

6-22

Table 6-5. (continued)

 Entry Point Function

 SETSEC Register BC contains the sector number, 1 through 26, for subsequent disk
accesses on the currently selected drive. The sector number in BC is the
same as the number returned from the SECTRAN entry point. You can
choose to send this information to the controller at this point or delay
sector selection until a read or write operation occurs.

 SETDMA Register BC contains the DMA (Disk Memory Access) address for
subsequent read or write operations. For example, if B = 00H and C = 80H
when SETDMA is called, all subsequent read operations read their data
into 80H through 0FFH and all subsequent write operations get their data
from 80H through 0FFH, until the next call to SETDMA occurs. The

initial DMA address is assumed to be 80H. The controller need not actually
support Direct Memory Access. If, for example, all data transfers are
through I/O ports, the CBIOS that is constructed uses the 128byte area
starting at the selected DMA address for the memory buffer during the
subsequent read or write operations.

 READ Assuming the drive has been selected, the track has been set, and
the DMA address has been specified, the READ subroutine attempts to
read eone sector based upon these parameters and returns the following
error codes in register A:

 0 no errors occurred

 1 nonrecoverable error condition occurred

Currently, CP/M responds only to a zero or nonzero value as the return
code. That is, if the value in register A is 0, CP/M assumes that the disk
operation was completed properly. IF an error occurs the CBIOS should
attempt at least 10 retries to see if the error is recoverable. When an error
is reported the BDOS prints the message BDOS ERR ON x: BAD
SECTOR. The operator then has the option of pressing a carriage return to

ignore the error, or CTRL-C to abort.

6.6 BIOS Entry Points CP/M Operating System Manual

6-23

Table 6-5. (continued)

 Entry Point Function

 WRITE Data is written from the currently selected DMA address to the currently
selected drive, track, and sector. For floppy disks, the data should be
marked as nondeleted data to maintain compatibility with other CP/M
systems. The error codes given in the READ command are returned in
register A, with error recovery attempts as described above.

 LISTST You return the ready status of the list device used by the DESPOOL
program to improve console response during its operation. The value 00 is
returned in A if the list device is not ready to accept a character and 0FFH
if a character can be sent to the printer. A 00 value should be returned if
LIST status is not implemented.

 SECTRAN Logical-to-physical sector translation is performed to improve the overall
response of CP/M. Standard CP/M systems are shipped with a skew factor
of 6, where six physical sectors are skipped between each logical read
operation. This skew factor allows enough time between sectors for most
programs to load their buffers without missing the next sector. In

particular computer systems that use fast processors, memory, and disk
subsystems, the skew factor might be changed to improve overall
response. However, the user should maintain a single-density
IBM-compatible version of CP/M for information transfer into and out
of the computer system, using a skew factor of 6.

In general, SECTRAN receives a logical sector number relative to zero in
BC and a translate table address in DE. The sector number is used as an
index into the translate table, with the resulting physical sector number in
HL. For standard systems, the table and indexing code is provided in the
CBIOS and need not be changed.

6.6 BIOS Entry Points CP/M Operating System Manual

6-24

6.7 A Sample BIOS

The program shown in Appendix B can serve as a basis for your first BIOS. The simplest
functions are assumed in this BIOS, so that you can enter it through a front panel, if absolutely
necessary. You must alter and insert code into the subroutines for CONST, CONIN, CONOUT,
READ, WRITE, and WAITIO subroutines. Storage is reserved for user-supplied code in these
regions. The scratch area reserved in page zero (see Section 6.9) for the BIOS is used in this
program, so that it could be implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print the initial sign-on message and
perform better error recovery. The subroutines for LIST, PUNCH, and READER can be filled
out and the IOBYTE function can be implemented.

6.8 A Sample Cold Start Loader

The program shown in Appendix E can serve as a basis for a cold start loader. The disk read
function must be supplied by the user, and the program must be loaded somehow starting at
location 0000. Space is reserved for the patch code so that the total amount of storage required
for the cold start loader is 128 bytes.

Eventually, you might want to get this loader onto the first disk sector (track 0, sector 1) and
cause the controller to load it into memory automatically upon system start up. Alternatively, the
cold start loader can be placed into ROM, and above the CP/M system. In this case, it is
necessary to originate the program at a higher address and key in a jump instruction at system
start up that branches to the loader. Subsequent warm starts do not require this key-in operation,
because the entry point WBOOT gets control, thus bringing the system in from disk
automatically. The skeletal cold start loader has minimal error recovery, which might be
enhanced in later versions.

6.6 BIOS Entry Points CP/M Operating System Manual

6-25

6.9 Reserved Locations in Page Zero

Main memory page zero, between locations 0H and 0FFH, contains several segments of code and
data that are used during CP/M processing. The code and data areas are given in the following
table.

Table 6-6. Reserved Locations in Page Zero

 Locations Contents

 0000H-0002H Contains a jump instruction to the warm start entry location 4A03H+b.
This allows a simple programmed restart (JMP 0000H) or manual restart
from the front panel.

 0003H-0003H Contains the Intel standard IOBYTE is optionally included in the user's
CBIOS (refer to Section 6.6).

 0004H-0004H Current default drive number (0=A,...,15=P).

 0005H-0007H Contains a jump instruction to the BDOS and serves two purposes: JMP
0005H provides the primary entry point to the BDOS, as described in
Section 5, and LHLD 0006H brings the address field of the instruction to
the HL register pair. This value is the lowest address in memory used by
CP/M, assuming the CCP is being overlaid. The DDT program changes

the address field to reflect the reduced memory size in debug mode.

 0008H-0027H Interrupt locations I through 5 not used.

 0030H-0037H Interrupt location 6 (not currently used) is reserved.

 0038H-003AH Restart 7; contains a jump instruction into the DDT or SID program when
running in debug mode for programmed breakpoints, but is not otherwise
used by CP/M.

 003BH-003FH Not currently used; reserved.

6.7 A Sample BIOS CP/M Operating System Manual

6-26

Table 6-6. (continued)

 Locations Contents

 0040H-004FH A 16-byte area reserved for scratch by CBIOS, but is not used for any
purpose in the distribution version of CP/M.

 0050H-005BH Not currently used; reserved.

 005CH-007CH Default File Control Block produced for a transient program by the CCP.

 007DH-007FH Optional default random record position.

 0080H-00FFH Default 128-byte disk buffer, also filled with the command line when a
transient is loaded under the CCP.

This information is set up for normal operation under the CP/M system, but can be overwritten
by a transient program if the BDOS facilities are not required by the transient.

If, for example, a particular program performs only simple I/O and must begin execution at
location 0, it can first be loaded into the TPA, using normal CP/M facilities, with a small
memory move program that gets control when loaded. The memory move program must get
control from location 0100H, which is the assumed beginning of all transient programs. The
move program can then proceed to the entire memory image down to location 0 and pass control
to the starting address of the memory load.

If the BIOS is overwritten or if location 0, containing the warm start entry point, is overwritten,
the operator must bring the CP/M system back into memory with a cold start sequence.

6.9 Reserved Locations in Page Zero CP/M Operating System Manual

6-27

6.10 Disk Parameter Tables

Tables are included in the BIOS that describe the particular characteristics of the disk subsystem
used with CP/M. These tables can be either hand-coded, as shown in the sample CBIOS in
Appendix B, or automatically generated using the DISKDEF macro library, as shown in
Appendix F. The purpose here is to describe the elements of these tables.

In general, each disk drive has an associated (16-byte) disk parameter header that contains
information about the disk drive and provides a scratch pad area for certain BDOS operations.
The format of the disk parameter header for each drive is shown in Figure 6-2, where each
element is a word (16-bit) value.

 DISK PARAMETER HEADER
 +-------+------+------+------+----------+-------+-------+-------+
 | XLT | 0000 | 0000 | 0000 |DIRBUF| DPB | CSV | ALV |
 +------+------+------+-------+----------+-------+-------+-------+
 16B 16B 16B 16B 16B 16B 16B 16B

Figure 6-2. Disk Parameter Header Format

The meaning of each Disk Parameter Header (DPH) element is detailed in Table 6-7.

Table 6-7. Disk Parameter Headers

 Disk Parameter
 Header Meaning

 XLTAddress of the logical-to-physical translation vector, if used for this particular drive, or
the value 0000H if no sector translation takes place (that is, the physical and logical sector
numbers are the same). Disk drives with identical sector skew factors share the same translate
tables.

 0000 Scratch pad values for use within the BDOS, initial value is unimportant.

 DIRBUF Address of a 128-byte scratch pad area for directory operations within
BDOS. All DPHs address the same scratch pad area.

6.9 Reserved Locations in Page Zero CP/M Operating System Manual

6-28

Table 6-7. (continued)

 Disk Parameter
 Header Meaning

 DPB Address of a disk parameter block for this drive. Drives withidentical disk
characteristics address the same disk parameter block.

 CSV Address of a scratch pad area used for software check for changed disks.
This address is different for each DPH.

 ALV Address of a scratch pad area used by the BDOS to keep disk storage
allocation information. This address is different for each DPH.

Given n disk drives, the DPHs are arranged in a table whose first row of 16 bytes corresponds to
drive 0, with the last row corresponding to drive n-1. In the following figure the label DPBASE
defines the base address of the DPH table.

DPBASE:
00 XLT00 0000 0000 0000 DIRBUF DBP00 CSV00 ALV00
01 XLT01 0000 0000 0000 DIRBUF DBP01 CSV01 ALV01

 (AND SO ON THROUGH)
n-1 XLTn-1 0000 0000 0000 DIRBUF DBPn-1 CSVn-1 ALVn-1

Figure 6-3. Disk Parameter Header Table

6.10 Disk Parameter Tables CP/M Operating System Manual

6-29

A responsibility of the SELDSK subroutine is to return the base address of the DPH for the
selected drive. The following sequence of operations returns the table address, with a 0000H
returned if the selected drive does not exist.

NDISKS EQU 4 ;NUMBER OF DISK DRIVES

SELDSK: ;SELECT DISK GIYEN BY BC
 LXI H,0000H ;ERROR CODE
 MOV A,C ;DRIVE OK?
 CPI NDISKS ;CY IF SO
 RNC ;RET IF ERROR
 ;NO ERROR, CONTINUE
 MOV L,C ;LOW(DISK)
 MOV H,B ;HIGH(DISK)
 DAD H
 DAD H ;*4
 DAD H ;*8
 DAD H ;*16
 LXI D,DPBASE ;FIRST DP
 DAD D ;DPH(DISK)
 RET

The translation vectors, XLT00 through XLTn-1, are located elsewhere in the BIOS, and simply
correspond one-for-one with the logical sector numbers zero through the sector count 1. The Disk
Parameter Block (DPB) for each drive is more complex. As shown in Figure 6-4, particular DPB,
that is addressed by one or more DPHS, takes the general form:

+----+----+------+-----+-----+------+----+----+-----+----+
|SPT|BSH|BLM|EXM|DSM|DRM|AL0|AL1|CKS|OFF|
+----+----+------+-----+-----+------+----+----+-----+----+
 16B 8B 8B 8B 16B 16B 8B 8B 16B 16B

Figure 6-4. Disk Parameter Block Format

where each is a byte or word value, as shown by the 8b or 16b indicator below the field.

6.10 Disk Parameter Tables CP/M Operating System Manual

6-30

The following field abbreviations are used in Figure 6-4:

 -SPT is the total number of sectors per track.

 -BSH is the data allocation block shift factor, determined by the data block allocation
size.

 -BLM is the data allocation block mask (2[BSH-1]).

 -EXM is the extent mask, determined by the data block allocation size and the number of
disk blocks.

 -DSM determines the total storage capacity of the disk drive.

 -DRM determines the total number of directory entries that can be stored on this drive.

 -AL0, AL1 determine reserved directory blocks.

 -CKS is the size of the directory check vector.

 -OFF is the number of reserved tracks at the beginning of the (logical) disk.

The values of BSH and BLM determine the data allocation size BLS, which is not an entry in the
DPB. Given that the designer has selected a value for BLS, the values of BSH and BLM are
shown in Table 6-8.

Table 6-8. BSH and BLM Values

 BLS BSH BLM

 1,024 3 7
 2,048 4 15
 4,096 5 31
 8,192 6 63
 16,384 7 127

where all values are in decimal. The value of EXM depends upon both the BLS and whether the
DSM value is less than 256 or greater than 255, as shown in Table 6-9.

6.10 Disk Parameter Tables CP/M Operating System Manual

6-31

Table 6-9. EXM Values

 EXM values
 BLS DSM<256 DSM>255

 1,024 0 N/A
 2,048 1 0
 4,096 3 1
 8,192 7 3
 16,384 15 7

The value of DSM is the maximum data block number supported by this particular drive,
measured in BLS units. The product (DSM + 1) is the total number of bytes held by the drive and
must be within the capacity of the physical disk, not counting the reserved operating system
tracks.

The DRM entry is the one less than the total number of directory entries that can take on a 16-bit
value. The values of AL0 and AL1, however, are determined by DRM. The values AL0 and AL1
can together be considered a string of 16-bits, as shown in Figure 6-5.

 |------------- AL0 ---------|------------ AL1 ----------|
 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Figure 6-5. AL0 and AL1

6.10 Disk Parameter Tables CP/M Operating System Manual

6-32

Position 00 corresponds to the high-order bit of the byte labeled AL0 and 15 corresponds to the
low-order bit of the byte labeled AL1. Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be assigned for directory entries (bits
are assigned starting at 00 and filled to the right until position 15). Each directory entry occupies
32 bytes, resulting in the following tabulation:

Table 6-10. BLS Tabulation

 BLS Directory Entries
 1,024 32 times # bits

 2,048 64 times # bits
 4,096 128 times # bits

 8,192 256 times # bits
 16,384 512 times # bits

Thus, if DRM = 127 (128 directory entries) and BLS = 1024, there are 32 directory entries per
block, requiring 4 reserved blocks. In this case, the 4 high-order bits of AL0 are set, resulting in
the values AL0 = 0F0H and AL1 = 00H.

The CKS value is determined as follows: if the disk drive media is removable, then CKS =
(DRM + 1)/4, where DRM is the last directory entry number. If the media are fixed, then set
CKS = 0 (no directory records are checked in this case).

Finally, the OFF field determines the number of tracks that are skipped at the beginning of the
physical disk. This value is automatically added whenever SETTRK is called and can be used as
a mechanism for skipping reserved operating system tracks or for partitioning a large disk into
smaller segmented sections.

To complete the discussion of the DPB, several DPHs can address the same DPB if their drive
characteristics are identical. Further, the DPB can be dynamically changed when a new drive is
addressed by simply changing the pointer in the DPH; because the BDOS copies the DPB values
to a local area whenever the SELDSK function is invoked.

Returning back to DPH for a particular drive, the two address values CSV and ALV remain.
Both addresses reference an area of uninitialized memory following the BIOS. The areas must be
unique for each drive, and the size of each area is determined by the values in the DPB.

6.10 Disk Parameter Tables CP/M Operating System Manual

6-33

The size of the area addressed by CSV is CKS bytes, which is sufficient to hold the directory
check information for this particular drive. If CKS = (DRM + 1)/4, you must reserve (DRM +
1)/4 bytes for directory check use. If CKS = 0, no storage is reserved.

The size of the area addressed by ALV is determined by the maximum number of data blocks
allowed for this particular disk and is computed as (DSM/8) + 1.

The CBIOS shown in Appendix B demonstrates an instance of these tables for standard 8-inch,
single-density drives. It might be useful to examine this program and compare the tabular values
with the definitions given above.

6.11 The DISKDEF Macro Library

A macro library called DISKDEF (shown in Appendix F), greatly simplifies the table
construction process. You must have access to the MAC macro assembler, of course, to use the
DISKDEF facility, while the macro library is included with all CP/M 2 distribution disks.

A BIOS disk definition consists of the following sequence of macro statements:

 MACLIB DISKDEF

 DISKS n
 DISKDEF 0,. . .
 DISKDEF 1,. . .

 DISKDEF n - 1

 ENDEF

where the MACLIB statement loads the DISKDEF.LIB file, on the same disk as the BIOS, into
MAC's internal tables. The DISKS macro call follows, which specifies the number of drives to
be configured with the user's system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow that define the characteristics of each logical disk, 0 through n
- 1, corresponding to logical drives A through P. The DISKS and DISKDEF macros generate the
in-line fixed data tables described in the previous section and thus must be placed in a
nonexecutable portion of the BIOS, typically directly following the BIOS jump vector.

6.10 Disk Parameter Tables CP/M Operating System Manual

6-34

The remaining portion of the BIOS is defined following the DISKDEF macros, with the ENDEF
macro call immediately preceding the END statement. The ENDEF (End of Diskdef) macro
generates the necessary uninitialized RAM areas that are located in memory above the BIOS.

The DISKDEF macro call takes the form:

 DISKDEF dn,fsc,lsc,[skf],bls dks,dir,cks,ofs,[0]

where
 -dn is the logical disk number, 0 to n - 1.
 -fsc is the first physical sector number (0 or 1).
 -lsc is the last sector number.
 -skf is the optional sector skew factor.
 -bls is the data allocation block size.
 -dks is the number of blocks on the disk.
 -dir is the number of directory entries.
 -cks is the number of checked directory entries.
 -ofs is the track offset to logical track 00.
 -[0] is an optional 1.4 compatibility flag.

The value dn is the drive number being defined with this DISKDEF macro invocation. The fsc
parameter accounts for differing sector numbering systems and is usually 0 to 1. The lsc is the
last numbered sector on a track. When present, the skf parameter defines the sector skew factor,
which is used to create a sector translation table according to the skew.

If the number of sectors is less than 256, a single-byte table is created, otherwise each translation
table element occupies two bytes. No translation table is created if the skf parameter is omitted,
or equal to 0.

The bls parameter specifies the number of bytes allocated to each data block, and takes on the
values 1024, 2048, 4096, 8192, or 16384. Generally, performance increases with larger data
block sizes because there are fewer directory references, and logically connected data records are
physically close on the disk. Further, each directory entry addresses more data and the
BIOS-resident RAM space is reduced.

The dks parameter specifies the total disk size in bls units. That is, if the bls = 2048 and dks =
1000, the total disk capacity is 2,048,000 bytes. If dks is greater than 255, the block size
parameter bls must be greater than 1024. The value of dir is the total number of directory entries
that might exceed 255, if desired.

6.10 Disk Parameter Tables CP/M Operating System Manual

6-35

The cks parameter determines the number of directory items to check on each directory scan and
is used internally to detect changed disks during system operation, where an intervening cold or
warm start has not occurred. When this situation is detected, CP/M automatically marks the disk
Read-Only so that data is not subsequently destroyed.

As stated in the previous section, the value of cks = dir when the medium is easily changed, as is
the case with a floppy disk subsystem. If the disk is permanently mounted, the value of cks is
typically 0, because the probability of changing disks without a restart is low.

The ofs value determines the number of tracks to skip when this particular drive is addressed,
which can be used to reserve additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [0] parameter is included when file
compatibility is required with versions of 1.4 that have been modified for higher density disks.
This parameter ensures that only 16K is allocated for each directory record, as was the case for
previous versions. Normally, this parameter is not included.

For convenience and economy of table space, the special form:

DISKDEF i,j

gives disk i the same characteristics as a previously defined drive j. A standard fourdrive,
single-density system, which is compatible with version 1.4, is defined using the following macro
invocations:

DISKS 4
DISKDEF 0,1,26,6,1024,243,64,2
DISKDEF 1,0
DISKDEF 2,0
DISKDEF 3,0

ENDEF

with all disks having the same parameter values of 26 sectors per track, numbered 1 through 26,
with 6 sectors skipped between each access, 1024 bytes per data block, 243 data blocks for a total
of 243K-byte disk capacity, 64 checked directory entries, and two operating system tracks.

6.11 The DISKDEF Macro Library CP/M Operating System Manual

6-36

The DISKS macro generates n DPHS, starting at the DPH table address DPBASE generated by
the macro. Each disk header block contains sixteen bytes, as described above, and correspond
one-for-one to each of the defined drives. In the four-drive standard system, for example, the
DISKS macro generates a table of the form:

DPBASE EQU $
DPEO: DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV0,ALV0
DPE1: DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV1,ALV1
DPE2: DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV2,ALV2
DPE3: DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the DPH labels are included for reference purposes to show the beginning table addresses
for each drive 0 through 3. The values contained within the DPH are described in detail in the
previous section. The check and allocation vector addresses are generated by the ENDEF macro
in the RAM area following the BIOS code and tables.

Note that if the skf (skew factor) parameter is omitted, or equal to 0, the translation table is
omitted and a 0000H value is inserted in the XLT position of the DPH for the disk. In a
subsequent call to perform the logical-to-physical translation, SECTRAN receives a translation
table address of DE = 0000H and simply returns the original logical sector from BC in the HL
register pair.

A translate table is constructed when the skf parameter is present, and the (nonzero) table address
is placed into the corresponding DPHS. The following, for example, is constructed when the
standard skew factor skf = 6 is specified in the DISKDEF macro call:

XLT0: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
 DB 2,8,14,20,26,6,12,18,24,4,10,16,22

6.11 The DISKDEF Macro Library CP/M Operating System Manual

6-37

Following the ENDEF macro call, a number of uninitialized data areas are defined. These data
areas need not be a part of the BIOS that is loaded upon cold start, but must be available between
the BIOS and the end of memory. The size of the uninitialized RAM area is determined by EQU
statements generated by the ENDEF macro. For a standard four-drive system, the ENDEF macro
might produce the following EQU statement:

4C72 = BEGDAT EQU $ (data areas)
4DBO = ENDDAT EQU $
013C = DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends at 4DB0H-1, and
occupies 013CH bytes. You must ensure that these addresses are free for use after the system is
loaded.

After modification, you can use the STAT program to check drive characteristics, because STAT
uses the disk parameter block to decode the drive information. A STAT command of the form:

STAT D:DSK:

decodes the disk parameter block for drive d (d = A,...,P) and displays the following values:

r: 128-byte record capacity
k: kilobyte drive capacity
d: 32-byte directory entries
c: checked directory entries
e: records/extent
b: records/block
s: sectors/track
t: reserved tracks

6.11 The DISKDEF Macro Library CP/M Operating System Manual

6-38

Three examples of DISKDEF macro invocations are shown below with corresponding STAT
parameter values. The last example produces a full 8-megabyte system.

DISKDEF 0,1,58,,2048,256,128,128,2
r=4096, k=512, d=128, c=128, e=256, b=16, s=58, t=2

DISKDEF 0,1,58,,2048,1024,300,0,2
r=16348, k=2048, d=300, c=0, e=128, b=16, s=58, t=2

DISKDEF 0,1,58,,16348,512,128,128,2
r=65536, k=8192, d=128, c=128, e=1024, b=128, s=58, t=2

6.12 Sector Blocking and Deblocking

Upon each call to BIOS WRITE entry point, the CP/M BDOS includes information that allows
effective sector blocking and deblocking where the host disk subsystem has a sector size that is a
multiple of the basic 128-byte unit. The purpose here is to present a general-purpose algorithm
that can be included within the BIOS and that uses the BDOS information to perform the
operations automatically.

On each call to WRITE, the BDOS provides the following information in register C:

 0 = (normal sector write)
 1 = (write to directory sector)
 2 = (write to the first sector of a new data block)

Condition 0 occurs whenever the next write operation is into a previously written area, such as a
random mode record update; when the write is to other than the first sector of an unallocated
block; or when the write is not into the directory area. Condition 1 occurs when a write into the
directory area is performed. Condition 2 occurs when the first record (only) of a newly allocated
data block is written. In most cases, application programs read or write multiple 128-byte sectors
in sequence; thus, there is little overhead involved in either operation when blocking and
deblocking records, because preread operations can be avoided when writing records.

6.11 The DISKDEF Macro Library CP/M Operating System Manual

6-39

Appendix G lists the blocking and deblocking algorithms in skeletal form; this file is included on
your CP/M disk. Generally, the algorithms map all CP/M sector read operations onto the host
disk through an intermediate buffer that is the size of the host disk sector. Throughout the
program, values and variables that relate to the CP/M sector involved in a seek operation are
prefixed by sek, while those related to the host disk system are prefixed by hst. The equate
statements beginning on line 29 of Appendix G define the mapping between CP/M and the host
system, and must be changed if other than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization code starting on line 57,
while the SELDSK entry point must be augmented by the code starting on line 65. Note that
although the SELDSK entry point computes and returns the Disk Parameter Header address, it
does not physically select the host disk at this point (it is selected later at READHST or
WRITEHST). Further, SETTRK and SETMA simply store the values, but do not take any other
action at this point. SECTRAN performs a trivial function of returning the physical sector
number.

The principal entry points are READ and WRITE, starting on lines 110 and 125, respectively.
These subroutines take the place of your previous READ and WRITE operations.

The actual physical read or write takes place at either WRITEHST or READHST, where all
values have been prepared: hstdsk is the host disk number, hsttrk is the host track number, and
hstsec is the host sector number, which may require translation to physical sector number. You
must insert code at this point that performs the full sector read or write into or out of the buffer at
hstbuf of length hstsiz. All other mapping functions are performed by the algorithms.

This particular algorithm was tested using an 80-megabyte hard disk unit that was originally
configured for 128-byte sectors, producing approximately 35 megabytes of formatted storage.
When configured for 512-byte host sectors, usable storage increased to 57 megabytes, with a
corresponding 400% improvement in overall response. In this situation, there is no apparent
overhead involved in deblocking sectors, with the advantage that user programs still maintain
128-byte sectors. This is primarily because of the information provided by the BDOS, which
eliminates the necessity for preread operations.

End of Section 6

6.11 The DISKDEF Macro Library CP/M Operating System Manual

6-40

 ; MDS-800 I/O DRIVERS FOR CP/M 2.2
 ; (FOUR DRIVE SINGLE DENSITY VERSION)
 ;
 ; VERSION 2.2 FEBRUARY, 1980
 ;
 0016 = VERS EQU 22 ;VERSION 2.2
 ;
 ; COPYRIGHT (C) 1980
 ; DIGITAL RESEARCH
 ; BOX 579, PACIFIC GROVE
 ; CALIFORNIA, 93950
 ;
 ;
 FFFF = TRUE EQU 0FFFFH ;VALUE OF "TRUE"
 0000 = FALSE EQU NOT TRUE ;"FALSE"
 0000 = TEST EQU FALSE ;TRUE IF TEST BIOS
 ;
 IF TEST
 BIAS EQU 03400H ;BASE OF CCP IN TEST SYSTEM
 ENDIF
 IF NOT TEST
 0000 = BIAS EQU 0000H ;GENERATE RELOCATABLE CP/M

;SYSTEM
 ENDIF
 ;
 1600 = PATCH EQU 1600H
 ;
 1600 ORG PATCH
 0000 = CPMB EQU $-PATCH ;BASE OF CPM CONSOLE PROCESSOR
 0806 = BDOS EQU 806H+CPMB ;BASIC DOS (RESIDENT PORTION)
 1600 = CPML EQU $-CPMB ;LENGTH (IN BYTES) OF CPM SYSTEM
 002C = NSECTS EQU CPML/128 ;NUMBER OF SECTORS TO LOAD
 0002 = OFFSETEQU 2 ;NUMBER OF DISK TRACKS USED BY

;CP/M
 0004 = CDISK EQU 0004H ;ADDRESS OF LAST LOGGED DISK ON

;WARM START
 0080 = BUFF EQU 0080H ;DEFAULT BUFFER ADDRESS
 000A = RETRY EQU 10 ;MAX RETRIES ON DISK I/O BEFORE ERROR
 ;
 ; PERFORM FOLLOWING FUNCTIONS
 ; BOOT COLD START
 ; WBOOT WARM START (SAVE I/O BYTE)
 ; (BOOT AND WBOOT ARE THE SAME FOR MDS)
 ; CONST CONSOLE STATUS
 ; REG-A = 00 IF NO CHARACTER READY

6.11 The DISKDEF Macro Library CP/M Operating System Manual

A-1

 ; REG-A = FF IF CHARACTER READY
 ; CONIN CONSOLE CHARACTER IN (RESULT IN REG-A)
 ; CONOUT CONSOLE CHARACTER OUT (CHAR IN REG-C)
 ; LIST LIST OUT (CHAR IN REG-C)
 ; PUNCH PUNCH OUT (CHAR IN REG-C)
 ; READER PAPER TAPE READER IN (RESULT TO REG-A)
 ; HOME MOVE TO TRACK 00
 ;
 ; (THE FOLLOWING CALLS SET-UP THE IO PARAMETER BLOCK FOR

 ; THE
 ; MDS, WHICH IS USED TO PERFORM SUBSEQUENT READS AND

 ; WRITES)
 ; SELDSK SELECT DISK GIVEN BY REG-C (0,1,2...)
 ; SETTRK SET TRACK ADDRESS (0,...76) FOR SUBSEQUENT

 ; READ/WRITE
 ; SETSEC SET SECTOR ADDRESS (1,...,26) FOR SUBSEQUENT

 ; READ/WRITE
 ; SETDMA SET SUBSEQUENT DMA ADDRESS (INITIALLY 80H)
 ;
 ; (READ AND WRITE ASSUME PREVIOUS CALLS TO SET UP THE IO

 ; PARAMETERS)
 ; READ READ TRACK/SECTOR TO PRESET DMA ADDRESS
 ; WRITE WRITE TRACK/SECTOR FROM PRESET DMA ADDRESS
 ;
 ; JUMP VECTOR FOR INDIVIUAL ROUTINES
 1600 C3B316 JMP BOOT
 1603 C3C316 WBOOTE: JMP WBOOT
 1606 C36117 JMP CONST
 1609 C36417 JMP CONIN
 160C C36A17 JMP CONOUT
 160F C36D17 JMP LIST
 1612 C37217 JMP PUNCH
 1615 C37517 JMP READER
 1618 C37817 JMP HOME
 161B C37D17 JMP SELDSK
 161E C3A717 JMP SETTRK
 1621 C3AC17 JMP SETSEC
 1624 C3BB17 JMP SETDMA
 1627 C3C117 JMP READ
 162A C3CA17 JMP WRITE
 162D C37017 JMP LISTST ;LIST STATUS
 1630 C3B117 JMP SECTRAN
 ;
 MACLIB DISKDEF ;LOAD THE DISK DEFINITION

;LIBRARY

Appendix A : The MDS-800 BIOS CP/M Operating System Manual

A-2

 DISKS4 ;FOUR DISKS
 1633+= DPBASE EQU $;BASE OF DISK PARAMETER BLOCKS
 1633+82160000 DPE0: DW XLT0,0000H ;TRANSLATE TABLE
 1637+00000000 DW 0000H,0000H ;SCRATCH AREA
 163B+6E187316 DW DIRBUF,DPB0 ;DIR BUFF,PARM BLOCK
 163F+0D19EE18 DW CSV0,ALV0 ;CHECK, ALLOC VECTORS
 1643+82160000 DPE1: DW XLT1,0000H ;TRANSLATE TABLE
 1647+00000000 DW 0000H,0000H ;SCRATCH AREA
 164B+6E187316 DW DIRBUF,DPB1 ;DIR BUFF,PARM BLOCK
 164F+3C191D19 DW CSV1,ALV1 ;CHECK, ALLOC VECTORS
 1653+82160000 DPE2: DW XLT2,0000H ;TRANSLATE TABLE
 1657+00000000 DW 0000H,0000H ;SCRATCH AREA
 165B+6E187316 DW DIRBUF,DPB2 ;DIR BUFF,PARM BLOCK
 165F+6B194C19 DW CSV2,ALV2 ;CHECK, ALLOC VECTORS
 1663+82160000 DPE3: DW XLT3,0000H ;TRANSLATE TABLE
 1667+00000000 DW 0000H,0000H ;SCRATCH AREA
 166B+6E187316 DW DIRBUF,DPB3 ;DIR BUFF,PARM BLOCK
 166F+9A197B19 DW CSV3,ALV3 ;CHECK, ALLOC VECTORS
 DISKDEF 0,1,26,6,1024,243,64,64,OFFSET
 1673+= DPB0 EQU $;DISK PARM BLOCK
 1673+1A00 DW 26 ;SEC PER TRACK
 1675+03 DB 3 ;BLOCK SHIFT
 1676+07 DB 7 ;BLOCK MASK
 1677+00 DB 0 ;EXTNT MASK
 1678+F200 DW 242 ;DISK SIZE-1
 167A+3F00 DW 63 ;DIRECTORY MAX
 167C+C0 DB 192 ;ALLOC0
 167D+00 DB 0 ;ALLOC1
 167E+1000 DW 16 ;CHECK SIZE
 1680+0200 DW 2 ;OFFSET
 1682+= XLT0 EQU $;TRANSLATE TABLE
 1682+01 DB 1
 1683+07 DB 7
 1684+0D DB 13
 1685+13 DB 19
 1686+19 DB 25
 1687+05 DB 5
 1688+0B DB 11
 1689+11 DB 17
 168A+17 DB 23
 168B+03 DB 3
 168C+09 DB 9
 168D+0F DB 15
 168E+15 DB 21
 168F+02 DB 2

Appendix A : The MDS-800 BIOS CP/M Operating System Manual

A-3

 1690+08 DB 8
 1691+0E DB 14
 1692+14 DB 20
 1693+1A DB 26
 1694+06 DB 6
 1695+0C DB 12
 1696+12 DB 18
 1697+18 DB 24
 1698+04 DB 4
 1699+0A DB 10
 169A+10 DB 16
 169B+16 DB 22
 DISKDEF 1,0
 1673+= DPB1 EQU DPB0 ;EQUIVALENT PARAMETERS
 001F+= ALS1 EQU ALS0 ;SAME ALLOCATION VECTOR SIZE
 0010+= CSS1 EQU CSS0 ;SAME CHECKSUM VECTOR SIZE
 1682+= XLT1 EQU XLT0 ;SAME TRANSLATE TABLE
 DISKDEF 2,0
 1673+= DPB2 EQU DPB0 ;EQUIVALENT PARAMETERS
 001F+= ALS2 EQU ALS0 ;SAME ALLOCATION VECTOR SIZE
 0010+= CSS2 EQU CSS0 ;SAME CHECKSUM VECTOR SIZE
 1682+= XLT2 EQU XLT0 ;SAME TRANSLATE TABLE
 DISKDEF 3,0
 1673+= DPB3 EQU DPB0 ;EQUIVALENT PARAMETERS
 001F+= ALS3 EQU ALS0 ;SAME ALLOCATION VECTOR SIZE
 0010+= CSS3 EQU CSS0 ;SAME CHECKSUM VECTOR SIZE
 1682+= XLT3 EQU XLT0 ;SAME TRANSLATE TABLE
 ; ENDEF OCCURS AT END OF ASSEMBLY
 ;
 ; END OF CONTROLLER - INDEPENDENT CODE, THE REMAINING

 ; SUBROUTINES
 ; ARE TAILORED TO THE PARTICULAR OPERATING ENVIRONMENT,

 ; AND MUST
 ; BE ALTERED FOR ANY SYSTEM WHICH DIFFERS FROM THE INTEL

 ; MDS.
 ;
 ; THE FOLLOWING CODE ASSUMES THE MDS MONITOR EXISTS AT

 ; 0F800H
 ; AND USES THE I/O SUBROUTINES WITHIN THE MONITOR
 ;
 ; WE ALSO ASSUME THE MDS SYSTEM HAS FOUR DISK DRIVES
 00FD = REVRTEQU 0FDH ;INTERRUPT REVERT PORT
 00FC = INTC EQU 0FCH ;INTERRUPT MASK PORT
 00F3 = ICON EQU 0F3H ;INTERRUPT CONTROL PORT
 007E = INTE EQU 0111$1110B ;ENABLE RST 0(WARM BOOT), RST 7

Appendix A : The MDS-800 BIOS CP/M Operating System Manual

A-4

;(MONITOR)
 ;
 ; MDS MONITOR EQUATES
 F800 = MON80 EQU 0F800H ;MDS MONITOR
 FF0F = RMON80 EQU 0FF0FH ;RESTART MON80 (BOOT ERROR)
 F803 = CI EQU 0F803H ;CONSOLE CHARACTER TO REG-A
 F806 = RI EQU 0F806H ;READER IN TO REG-A
 F809 = CO EQU 0F809H ;CONSOLE CHAR FROM C TO

;CONSOLE OUT
 F80C = PO EQU 0F80CH ;PUNCH CHAR FROM C TO PUNCH DEVICE
 F80F = LO EQU 0F80FH ;LIST FROM C TO LIST DEVICE
 F812 = CSTS EQU 0F812H ;CONSOLE STATUS 00/FF TO

;REGISTER A
 ;
 ; DISK PORTS AND COMMANDS
 0078 = BASE EQU 78H ;BASE OF DISK COMMAND IO PORTS
 0078 = DSTAT EQU BASE ;DISK STATUS (INPUT)
 0079 = RTYPE EQU BASE+1 ;RESULT TYPE (INPUT)
 007B = RBYTE EQU BASE+3 ;RESULT BYTE (INPUT)
 ;
 0079 = ILOW EQU BASE+1 ;IOPB LOW ADDRESS (OUTPUT)
 007A = IHIGH EQU BASE+2 ;IOPB HIGH ADDRESS (OUTPUT)
 ;
 0004 = READF EQU 4H ;READ FUNCTION
 0006 = WRITF EQU 6H ;WRITE FUNCTION
 0003 = RECAL EQU 3H ;RECALIBRATE DRIVE
 0004 = IORDY EQU 4H ;I/O FINISHED MASK
 000D = CR EQU 0DH ;CARRIAGE RETURN
 000A = LF EQU 0AH ;LINE FEED
 ;
 SIGNON: ;SIGNON MESSAGE: XXK CP/M VERS Y.Y
 169C 0D0A0A DB CR,LF,LF
 IF TEST
 DB '32' ;32K EXAMPLE BIOS
 ENDIF
 IF NOT TEST
 169F 3030 DB '00' ;MEMORY SIZE FILLED BY RELOCATOR
 ENDIF
 16A1 6B2043502F DB 'k CP/M vers '
 16AD 322E32 DB VERS/10+'0','.',VERS MOD 10+'0'
 16B0 0D0A00 DB CR,LF,0
 ;
 BOOT: ;PRINT SIGNON MESSAGE AND GO TO CCP
 ; (NOTE: MDS BOOT INITIALIZED IOBYTE AT 0003H)
 16B3 310001 LXI SP,BUFF+80H

Appendix A : The MDS-800 BIOS CP/M Operating System Manual

A-5

 16B6 219C16 LXI H,SIGNON
 16B9 CDD317 CALL PRMSG ;PRINT MESSAGE
 16BC AF XRA A ;CLEAR ACCUMULATOR
 16BD 320400 STA CDISK ;SET INITIALLY TO DISK A
 16C0 C30F17 JMP GOCPM ;GO TO CP/M
 ;
 ;
 WBOOT:; LOADER ON TRACK 0, SECTOR 1, WHICH WILL BE SKIPPED FOR
WARM
 ; READ CP/M FROM DISK - ASSUMING THERE IS A 128 BYTE COLD
START
 ; START.
 ;
 16C3 318000 LXI SP,BUFF ;USING DMA - THUS 80 THRU FF

;AVAILABLE FOR STACK
 ;
 16C6 0E0A MVI C,RETRY ;MAX RETRIES
 16C8 C5 PUSH B
 WBOOT0: ;ENTER HERE ON ERROR RETRIES
 16C9 010000 LXI B,CPMB ;SET DMA ADDRESS TO START OF

;DISK SYSTEM
 16CC CDBB17 CALL SETDMA
 16CF 0E00 MVI C,0 ;BOOT FROM DRIVE 0
 16D1 CD7D17 CALL SELDSK
 16D4 0E00 MVI C,0
 16D6 CDA717 CALL SETTRK ;START WITH TRACK 0
 16D9 0E02 MVI C,2 ;START READING SECTOR 2
 16DB CDAC17 CALL SETSEC
 ;
 ; READ SECTORS, COUNT NSECTS TO ZERO
 16DE C1 POP B ;10-ERROR COUNT
 16DF 062C MVI B,NSECTS
 RDSEC: ;READ NEXT SECTOR
 16E1 C5 PUSH B ;SAVE SECTOR COUNT
 16E2 CDC117 CALL READ
 16E5 C24917 JNZ BOOTERR ;RETRY IF ERRORS OCCUR
 16E8 2A6C18 LHLD IOD ;INCREMENT DMA ADDRESS
 16EB 118000 LXI D,128 ;SECTOR SIZE
 16EE 19 DAD D ;INCREMENTED DMA ADDRESS IN HL
 16EF 44 MOV B,H
 16F0 4D MOV C,L ;READY FOR CALL TO SET DMA
 16F1 CDBB17 CALL SETDMA
 16F4 3A6B18 LDA IOS ;SECTOR NUMBER JUST READ
 16F7 FE1A CPI 26 ;READ LAST SECTOR?
 16F9 DA0517 JC RD1

Appendix A : The MDS-800 BIOS CP/M Operating System Manual

A-6

 ; MUST BE SECTOR 26, ZERO AND GO TO NEXT TRACK
 16FC 3A6A18 LDA IOT ;GET TRACK TO REGISTER A
 16FF 3C INR A
 1700 4F MOV C,A ;READY FOR CALL
 1701 CDA717 CALL SETTRK
 1704 AF XRA A ;CLEAR SECTOR NUMBER
 1705 3C RD1: INR A ;TO NEXT SECTOR
 1706 4F MOV C,A ;READY FOR CALL
 1707 CDAC17 CALL SETSEC
 170A C1 POP B ;RECALL SECTOR COUNT
 170B 05 DCR B ;DONE?
 170C C2E116 JNZ RDSEC
 ;
 ; DONE WITH THE LOAD, RESET DEFAULT BUFFER ADDRESS
 GOCPM: ;(ENTER HERE FROM COLD START BOOT)
 ; ENABLE RST0 AND RST7
 170F F3 DI
 1710 3E12 MVI A,12H ;INITIALIZE COMMAND
 1712 D3FD OUT REVRT
 1714 AF XRA A
 1715 D3FC OUT INTC ;CLEARED
 1717 3E7E MVI A,INTE ;RST0 AND RST7 BITS ON
 1719 D3FC OUT INTC
 171B AF XRA A
 171C D3F3 OUT ICON ;INTERRUPT CONTROL
 ;
 ; SET DEFAULT BUFFER ADDRESS TO 80H
 171E 018000 LXI B,BUFF
 1721 CDBB17 CALL SETDMA
 ;
 ; RESET MONITOR ENTRY POINTS
 1724 3EC3 MVI A,JMP
 1726 320000 STA 0
 1729 210316 LXI H,WBOOTE
 172C 220100 SHLD 1 ;JMP WBOOT AT LOCATION 00
 172F 320500 STA 5
 1732 210608 LXI H,BDOS
 1735 220600 SHLD 6 ;JMP BDOS AT LOCATION 5
 IF NOT TEST
 1738 323800 STA 7*8 ;JMP TO MON80 (MAY HAVE BEEN

;CHANGED BY DDT)
 173B 2100F8 LXI H,MON80
 173E 223900 SHLD 7*8+1
 ENDIF
 ; LEAVE IOBYTE SET

Appendix A : The MDS-800 BIOS CP/M Operating System Manual

A-7

 ; PREVIOUSLY SELECTED DISK WAS B, SEND PARAMETER TO CPM
 1741 3A0400 LDA CDISK ;LAST LOGGED DISK NUMBER
 1744 4F MOV C,A ;SEND TO CCP TO LOG IT IN
 1745 FB EI
 1746 C30000 JMP CPMB
 ;
 ; ERROR CONDITION OCCURRED, PRINT MESSAGE AND RETRY
 BOOTERR:
 1749 C1 POP B ;RECALL COUNTS
 174A 0D DCR C
 174B CA5217 JZ BOOTER0
 ; TRY AGAIN
 174E C5 PUSH B
 174F C3C916 JMP WBOOT0
 ;
 BOOTER0:
 ; OTHERWISE TOO MANY RETRIES
 1752 215B17 LXI H,BOOTMSG
 1755 CDD317 CALL PRMSG
 1758 C30FFF JMP RMON80 ;MDS HARDWARE MONITOR
 ;
 BOOTMSG:
 175B 3F626F6F74 DB '?boot',0
 ;
 ;
 CONST: ;CONSOLE STATUS TO REG-A
 ; (EXACTLY THE SAME AS MDS CALL)
 1761 C312F8 JMP CSTS
 ;
 CONIN: ;CONSOLE CHARACTER TO REG-A
 1764 CD03F8 CALL CI
 1767 E67F ANI 7FH ;REMOVE PARITY BIT
 1769 C9 RET
 ;
 CONOUT: ;CONSOLE CHARACTER FROM C TO CONSOLE OUT
 176A C309F8 JMP CO
 ;
 LIST: ;LIST DEVICE OUT
 ; (EXACTLY THE SAME AS MDS CALL)
 176D C30FF8 JMP LO
 ;
 LISTST:
 ;RETURN LIST STATUS
 1770 AF XRA A
 1771 C9 RET ;ALWAYS NOT READY

Appendix A : The MDS-800 BIOS CP/M Operating System Manual

A-8

 ;
 PUNCH: ;PUNCH DEVICE OUT
 ; (EXACTLY THE SAME AS MDS CALL)
 1772 C30CF8 JMP PO
 ;
 READER: ;READER CHARACTER IN TO REG-A
 ; (EXACTLY THE SAME AS MDS CALL)
 1775 C306F8 JMP RI
 ;
 HOME: ;MOVE TO HOME POSITION
 ; TREAT AS TRACK 00 SEEK
 1778 0E00 MVI C,0
 177A C3A717 JMP SETTRK
 ;
 SELDSK: ;SELECT DISK GIVEN BY REGISTER C
 177D 210000 LXI H,0000H ;RETURN 0000 IF ERROR
 1780 79 MOV A,C
 1781 FE04 CPI NDISKS ;TOO LARGE?
 1783 D0 RNC ;LEAVE HL = 0000
 ;
 1784 E602 ANI 10B ;00 00 FOR DRIVE 0,1 AND 10 10 FOR

;DRIVE 2,3
 1786 326618 STA DBANK ;TO SELECT DRIVE BANK
 1789 79 MOV A,C ;00, 01, 10, 11
 178A E601 ANI 1B ;MDS HAS 0,1 AT 78, 2,3 AT 88
 178C B7 ORA A ;RESULT 00?
 178D CA9217 JZ SETDRIVE
 1790 3E30 MVI A,00110000B ;SELECTS DRIVE 1 IN BANK
 SETDRIVE:
 1792 47 MOV B,A ;SAVE THE FUNCTION
 1793 216818 LXI H,IOF ;IO FUNCTION
 1796 7E MOV A,M
 1797 E6CF ANI 11001111B ;MASK OUT DISK NUMBER
 1799 B0 ORA B ;MASK IN NEW DISK NUMBER
 179A 77 MOV M,A ;SAVE IT IN IOPB
 179B 69 MOV L,C
 179C 2600 MVI H,0 ;HL=DISK NUMBER
 179E 29 DAD H ;*2
 179F 29 DAD H ;*4
 17A0 29 DAD H ;*8
 17A1 29 DAD H ;*16
 17A2 113316 LXI D,DPBASE
 17A5 19 DAD D ;HL=DISK HEADER TABLE ADDRESS
 17A6 C9 RET
 ;

Appendix A : The MDS-800 BIOS CP/M Operating System Manual

A-9

 ;
 SETTRK: ;SET TRACK ADDRESS GIVEN BY C
 17A7 216A18 LXI H,IOT
 17AA 71 MOV M,C
 17AB C9 RET
 ;
 SETSEC: ;SET SECTOR NUMBER GIVEN BY C
 17AC 216B18 LXI H,IOS
 17AF 71 MOV M,C
 17B0 C9 RET
 SECTRAN:
 ;TRANSLATE SECTOR BC USING TABLE AT DE
 17B1 0600 MVI B,0 ;DOUBLE PRECISION SECTOR NUMBER IN BC
 17B3 EB XCHG ;TRANSLATE TABLE ADDRESS TO HL
 17B4 09 DAD B ;TRANSLATE(SECTOR) ADDRESS
 17B5 7E MOV A,M ;TRANSLATED SECTOR NUMBER TO A
 17B6 326B18 STA IOS
 17B9 6F MOV L,A ;RETURN SECTOR NUMBER IN L
 17BA C9 RET
 ;
 SETDMA: ;SET DMA ADDRESS GIVEN BY REGS B,C
 17BB 69 MOV L,C
 17BC 60 MOV H,B
 17BD 226C18 SHLD IOD
 17C0 C9 RET
 ;
 READ: ;READ NEXT DISK RECORD (ASSUMING DISK/TRK/SEC/DMA
SET)
 17C1 0E04 MVI C,READF ;SET TO READ FUNCTION
 17C3 CDE017 CALL SETFUNC
 17C6 CDF017 CALL WAITIO ;PERFORM READ FUNCTION
 17C9 C9 RET ;MAY HAVE ERROR SET IN REG-A
 ;
 ;
 WRITE: ;DISK WRITE FUNCTION
 17CA 0E06 MVI C,WRITF
 17CC CDE017 CALL SETFUNC ;SET TO WRITE FUNCTION
 17CF CDF017 CALL WAITIO
 17D2 C9 RET ;MAY HAVE ERROR SET
 ;
 ;
 ; UTILITY SUBROUTINES
 PRMSG: ;PRINT MESSAGE AT H,L TO 0
 17D3 7E MOV A,M
 17D4 B7 ORA A ;ZERO?

Appendix A : The MDS-800 BIOS CP/M Operating System Manual

A-10

 17D5 C8 RZ
 ; MORE TO PRINT
 17D6 E5 PUSH H
 17D7 4F MOV C,A
 17D8 CD6A17 CALL CONOUT
 17DB E1 POP H
 17DC 23 INX H
 17DD C3D317 JMP PRMSG
 ;
 SETFUNC:
 ; SET FUNCTION FOR NEXT I/O (COMMAND IN REG-C)
 17E0 216818 LXI H,IOF ;IO FUNCTION ADDRESS
 17E3 7E MOV A,M ;GET IT TO ACCUMULATOR FOR MASKING
 17E4 E6F8 ANI 11111000B ;REMOVE PREVIOUS COMMAND
 17E6 B1 ORA C ;SET TO NEW COMMAND
 17E7 77 MOV M,A ;REPLACED IN IOPB
 ; THE MDS-800 CONTROLLER REQUIRES DISK BANK BIT IN SECTOR
BYTE
 ; MASK THE BIT FROM THE CURRENT I/O FUNCTION
 17E8 E620 ANI 00100000B ;MASK THE DISK SELECT BIT
 17EA 216B18 LXI H,IOS ;ADDRESS THE SECTOR SELECT BYTE
 17ED B6 ORA M ;SELECT PROPER DISK BANK
 17EE 77 MOV M,A ;SET DISK SELECT BIT ON/OFF
 17EF C9 RET
 ;
 WAITIO:
 17F0 0E0A MVI C,RETRY ;MAX RETRIES BEFORE PERM ERROR
 REWAIT:
 ; START THE I/O FUNCTION AND WAIT FOR COMPLETION
 17F2 CD3F18 CALL INTYPE ;IN RTYPE
 17F5 CD4C18 CALL INBYTE ;CLEARS THE CONTROLLER
 ;
 17F8 3A6618 LDA DBANK ;SET BANK FLAGS
 17FB B7 ORA A ;ZERO IF DRIVE 0,1 AND NZ IF 2,3
 17FC 3E67 MVI A,IOPB AND 0FFH ;LOW ADDRESS FOR IOPB
 17FE 0618 MVI B,IOPB SHR 8 ;HIGH ADDRESS FOR IOPB
 1800 C20B18 JNZ IODR1;DRIVE BANK 1?
 1803 D379 OUT ILOW ;LOW ADDRESS TO CONTROLLER
 1805 78 MOV A,B
 1806 D37A OUT IHIGH ;HIGH ADDRESS
 1808 C31018 JMP WAIT0 ;TO WAIT FOR COMPLETE
 ;
 IODR1: ;DRIVE BANK 1
 180B D389 OUT ILOW+10H ;88 FOR DRIVE BANK 10
 180D 78 MOV A,B

Appendix A : The MDS-800 BIOS CP/M Operating System Manual

A-11

 180E D38A OUT IHIGH+10H
 ;
 1810 CD5918 WAIT0: CALL INSTAT ;WAIT FOR COMPLETION
 1813 E604 ANI IORDY ;READY?
 1815 CA1018 JZ WAIT0
 ;
 ; CHECK IO COMPLETION OK
 1818 CD3F18 CALL INTYPE ;MUST BE IO COMPLETE (00)
UNLINKED
 ; 00 UNLINKED I/O COMPLETE, 01 LINKED I/O COMPLETE (NOT USED)
 ; 10 DISK STATUS CHANGED 11 (NOT USED)
 181B FE02 CPI 10B ;READY STATUS CHANGE?
 181D CA3218 JZ WREADY
 ;
 ; MUST BE 00 IN THE ACCUMULATOR
 1820 B7 ORA A
 1821 C23818 JNZ WERROR ;SOME OTHER CONDITION, RETRY
 ;
 ; CHECK I/O ERROR BITS
 1824 CD4C18 CALL INBYTE
 1827 17 RAL
 1828 DA3218 JC WREADY ;UNIT NOT READY
 182B 1F RAR
 182C E6FE ANI 11111110B ;ANY OTHER ERRORS? (DELETED DATA OK)
 182E C23818 JNZ WERROR
 ;
 ; READ OR WRITE IS OK, ACCUMULATOR CONTAINS ZERO
 1831 C9 RET
 ;
 WREADY: ;NOT READY, TREAT AS ERROR FOR NOW
 1832 CD4C18 CALL INBYTE ;CLEAR RESULT BYTE
 1835 C33818 JMP TRYCOUNT
 ;
 WERROR: ;RETURN HARDWARE MALFUNCTION (CRC, TRACK, SEEK,

;ETC.)
 ; THE MDS CONTROLLER HAS RETURNED A BIT IN EACH POSITION
 ; OF THE ACCUMULATOR, CORRESPONDING TO THE CONDITIONS:
 ; 0 - DELETED DATA (ACCEPTED AS OK ABOVE)
 ; 1 - CRC ERROR
 ; 2 - SEEK ERROR
 ; 3 - ADDRESS ERROR (HARDWARE MALFUNCTION)
 ; 4 - DATA OVER/UNDER FLOW (HARDWARE MALFUNCTION)
 ; 5 - WRITE PROTECT (TREATED AS NOT READY)
 ; 6 - WRITE ERROR (HARDWARE MALFUNCTION)
 ; 7 - NOT READY

Appendix A : The MDS-800 BIOS CP/M Operating System Manual

A-12

 ; (ACCUMULATOR BITS ARE NUMBERED 7 6 5 4 3 2 1 0)
 ;
 ; IT MAY BE USEFUL TO FILTER OUT THE VARIOUS CONDITIONS,
 ; BUT WE WILL GET A PERMANENT ERROR MESSAGE IF IT IS NOT
 ; RECOVERABLE. IN ANY CASE, THE NOT READY CONDITION IS
 ; TREATED AS A SEPARATE CONDITION FOR LATER IMPROVEMENT
 TRYCOUNT:
 ; REGISTER C CONTAINS RETRY COUNT, DECREMENT 'TIL ZERO
 1838 0D DCR C
 1839 C2F217 JNZ REWAIT ;FOR ANOTHER TRY
 ;
 ; CANNOT RECOVER FROM ERROR
 183C 3E01 MVI A,1 ;ERROR CODE
 183E C9 RET
 ;
 ; INTYPE, INBYTE, INSTAT READ DRIVE BANK 00 OR 10
 183F 3A6618 INTYPE: LDA DBANK
 1842 B7 ORA A
 1843 C24918 JNZ INTYP1 ;SKIP TO BANK 10
 1846 DB79 IN RTYPE
 1848 C9 RET
 1849 DB89 INTYP1: IN RTYPE+10H ;78 FOR 0,1 88 FOR 2,3
 184B C9 RET
 ;
 184C 3A6618 INBYTE: LDA DBANK
 184F B7 ORA A
 1850 C25618 JNZ INBYT1
 1853 DB7B IN RBYTE
 1855 C9 RET
 1856 DB8B INBYT1: IN RBYTE+10H
 1858 C9 RET
 ;
 1859 3A6618 INSTAT: LDA DBANK
 185C B7 ORA A
 185D C26318 JNZ INSTA1
 1860 DB78 IN DSTAT
 1862 C9 RET
 1863 DB88 INSTA1: IN DSTAT+10H
 1865 C9 RET
 ;
 ;
 ;
 ; DATA AREAS (MUST BE IN RAM)
 1866 00 DBANK: DB 0 ;DISK BANK 00 IF DRIVE 0,1
 ; 10 IF DRIVE 2,3

Appendix A : The MDS-800 BIOS CP/M Operating System Manual

A-13

 IOPB: ;IO PARAMETER BLOCK
 1867 80 DB 80H ;NORMAL I/O OPERATION
 1868 04 IOF: DB READF ;IO FUNCTION, INITIAL READ
 1869 01 ION: DB 1 ;NUMBER OF SECTORS TO READ
 186A 02 IOT: DB OFFSET ;TRACK NUMBER
 186B 01 IOS: DB 1 ;SECTOR NUMBER
 186C 8000 IOD: DW BUFF ;IO ADDRESS
 ;
 ;
 ; DEFINE RAM AREAS FOR BDOS OPERATION
 ENDEF
 186E+= BEGDAT EQU $
 186E+ DIRBUF: DS 128 ;DIRECTORY ACCESS BUFFER
 18EE+ ALV0: DS 31
 190D+ CSV0: DS 16
 191D+ ALV1: DS 31
 193C+ CSV1: DS 16
 194C+ ALV2: DS 31
 196B+ CSV2: DS 16
 197B+ ALV3: DS 31
 199A+ CSV3: DS 16
 19AA+= ENDDAT EQU $
 013C+= DATSIZ EQU $-BEGDAT
 19AA END

Appendix A : The MDS-800 BIOS CP/M Operating System Manual

A-14

; skeletal cbios for first level of CP/M 2.0 alteration
;
msize equ 20 ;cp/m version memory size in kilobytes
;
; "bias" is address offset from 3400h for memory systems
; than 16k (referred to as"b" throughout the text)
;
bias equ (msize-20)*1024
ccp equ 3400h+bias ;base of ccp
bdos equ ccp+806h ;base of bdos
bios equ ccp+1600h ;base of bios
cdisk equ 0004h ;current disk number 0=a,... l5=p
iobyte equ 0003h ;intel i/o byte
;

org bios ;origin of this program
nsects equ ($-ccp)/128 ;warm start sector count
;
; jump vector for individual subroutines
;

jmp boot ;cold start
wboote: jmp wboot ;warm start

jmp const ;console status
jmp conin ;console character in
jmp conout ;console character out
jmp list ;list character out
jmp punch ;punch character out
jmp reader ;reader character out
jmp home ;move head to home position
jmp seldsk ;select disk
jmp settrk ;set track number
jmp setsec ;set sector number
jmp setdma ;set dma address
jmp read ;read disk
mp write ;write disk
jmp listst ;return list status
jmp sectran ;sector translate

;
; fixed data tables for four-drive standard
; ibm-compatible 8" disks
;
; disk Parameter header for disk 00
dpbase: dw trans, 0000h

dw 0000h, 0000h
dw dirbf, dpblk
dw chk00, all00

Appendix A : The MDS-800 BIOS CP/M Operating System Manual

B-1

; disk parameter header for disk 01
dw trans, 0000h
dw 0000h, 0000h
dw dirbf, dpblk
dw chk01, all01

; disk parameter header for disk 02
dw trans, 0000h
dw 0000h, 0000h
dw dirbf, dpblk
dw chk02, all02

; disk parameter header for disk 03
dw trans, 0000h
dw 0000h, 0000h
dw dirbf, dpblk
dw chk03, all03

;
; sector translate vector
trans: db 1, 7, 13, 19 ;sectors 1, 2, 3, 4

db 25, 5, 11, 17 ;sectors 5, 6, 7, 6
db 23, 3, 9, 15 ;sectors 9, 10, 11, 12
db 21, 2, 8, 14 ;sectors 13, 14, 15, 16
db 20, 26, 6, 12 ;sectors 17, 18, 19, 20
db 18, 24, 4, 10 ;sectors 21, 22, 23, 24
db 16, 22 ;sectors 25, 26

;
dpblk: ;disk parameter block, common to all disks

dw 26 ;sectors per track
db 3 ;block shift factor
db 7 ;block mask
db 0 ;null mask
dw 242 ;disk size-1
dw 63 ;directory max
db 192 ;alloc 0
db 0 ;alloc 1
dw 16 ;check size
dw 2 ;track offset

;
; end of fixed tables
;
; individual subroutines to perform each function
boot: ;simplest case is to just perform parameter initialization

xra a ;zero in the accum
sta iobyte ;clear the iobyte
sta cdisk ;select disk zero
jmp gocpm ;initialize and go to cp/m

Appendix B : A Sekletal CBIOS CP/M Operating System Manual

B-2

;
wboot: ;simplest case is to read the disk until all sectors loaded

lxi sp, 80h ;use space below buffer for stack
mvi c, 0 ;select disk 0
call seldsk
call home ;go to track 00

;
mvi b, nsects ;b counts * of sectors to load
mvi c, 0 ;c has the current track number
mvi d, 2 ;d has the next sector to read

; note that we begin by reading track 0, sector 2 since sector 1
; contains the cold start loader, which is skipped in a warm start

lxi h, ccp ;base of cp/m (initial load point)
load1: ;load one more sector

push b ;save sector count, current track
push d ;save next sector to read
push h ;save dma address
mov c, d ;get sector address to register C
call setsec ;set sector address from register C
pop b ;recall dma address to b, C
push b ;replace on stack for later recall
call setdma ;set dma address from b, C

;
; drive set to 0, track set, sector set, dma address set

call read
cpi 00h ;any errors?
jnz wboot ;retry the entire boot if an error occurs

;
; no error, move to next sector

pop h ;recall dma address
lxi d, 128 ;dma=dma+128
dad d ;new dma address is in h, l
pop d ;recall sector address
pop b ;recall number of sectors remaining, and current trk
dcr b ;sectors=sectors-1
jz gocpm ;transfer to cp/m if all have been loaded

;
; more sectors remain to load, check for track change

inr d
mov a,d ;sector=27?, if so, change tracks
cpi 27
jc load1 ;carry generated if sector<27

;
; end of current track, go to next track

mvi d, 1 ;begin with first sector of next track

Appendix B : A Sekletal CBIOS CP/M Operating System Manual

B-3

inr c ;track=track+1
;
; save register state, and change tracks

push b
push d
push h
call settrk ;track address set from register c
pop h
pop d
pop b
jmp load1 ;for another sector

;
; end of load operation, set parameters and go to cp/m
gocpm:

mvi a, 0c3h ;c3 is a jmp instruction
sta 0 ;for jmp to wboot
lxi h, wboote ;wboot entry point
shld 1 ;set address field for jmp at 0

;
sta 5 ;for jmp to bdos
lxi h, bdos ;bdos entry point
shld 6 ;address field of Jump at 5 to bdos

;
lxi b, 80h ;default dma address is 80h
call setdma

;
ei ;enable the interrupt system
lda cdisk ;get current disk number
mov c, a ;send to the ccp
jmp ccp ;go to cp/m for further processing

;
;
; simple i/o handlers (must be filled in by user)
; in each case, the entry point is provided, with space reserved
; to insert your own code
;
const: ;console status, return 0ffh if character ready, 00h if not

ds 10h ;space for status subroutine
mvi a, 00h
ret

;
conin: ;console character into register a

ds 10h ;space for input routine
ani 7fh ;strip parity bit
ret

Appendix B : A Sekletal CBIOS CP/M Operating System Manual

B-4

;
conout: ;console character output from register c

mov a, c ;get to accumulator
ds 10h ;space for output routine
ret

;
list: ;list character from register c

mov a, c ;character to register a
ret ;null subroutine

;
listst: ;return list status (0 if not ready, 1 if ready)

xra a ;0 is always ok to return
ret

;
punch: ;punch character from register C

mov a, c ;character to register a
ret ;null subroutine

;
;
reader: ;reader character into register a from reader device

mvi a, 1ah ;enter end of file for now (replace later)
ani 7fh ;remember to strip parity bit
ret

;
;
; i/o drivers for the disk follow
; for now, we will simply store the parameters away for use
; in the read and write subroutines
;
home: ;move to the track 00 position of current drive
; translate this call into a settrk call with Parameter 00

mvi c, 0 ;select track 0
call settrk
ret ;we will move to 00 on first read/write

;
seldsk: ;select disk given by register c

lxi h, 0000h ;error return code
mov a, c
sta diskno
cpi 4 ;must be between 0 and 3
rnc ;no carry if 4, 5,...

; disk number is in the proper range
ds 10 ;space for disk select

; compute proper disk Parameter header address
lda diskno

Appendix B : A Sekletal CBIOS CP/M Operating System Manual

B-5

mov l, a ;l=disk number 0, 1, 2, 3
mvi h, 0 ;high order zero
dad h ;*2
dad h ;*4
dad h ;*8
dad h ;*16 (size of each header)
lxi d, dpbase
dad 0 ;hl=,dpbase (diskno*16)
ret

;
settrk: ;set track given by register c

mov a, c
sta track
ds 10h ;space for track select
ret

;
setsec: ;set sector given by register c

mov a, c
sta sector
ds 10h ;space for sector select
ret

;
;
sectran:

;translate the sector given by bc using the
;translate table given by de

xchg ;hl=.trans
dad b ;hl=.trans (sector)
mov l, m ;l=trans (sector)
mvi h, 0 ;hl=trans (sector)
ret ;with value in hl

;
setdma: ;set dma address given by registers b and c

mov l, c ;low order address
mov h, b ;high order address
shld dmaad ;save the address
ds 10h ;space for setting the dma address
ret

;
read: ;perform read operation (usually this is similar to write
; so we will allow space to set up read command, then use
; common code in write)

ds 10h ;set up read command
jmp waitio ;to perform the actual i/o

;

Appendix B : A Sekletal CBIOS CP/M Operating System Manual

B-6

write: ;perform a write operation
ds 10h ;set up write command

;
waitio: ;enter here from read and write to perform the actual i/o
; operation. return a 00h in register a if the operation completes
; properly, and 0lh if an error occurs during the read or write
;
; in this case, we have saved the disk number in 'diskno' (0, 1)
; the track number in 'track' (0-76)
; the sector number in 'sector' (1-26)
; the dma address in 'dmaad' (0-65535)

ds 256 ;space reserved for i/o drivers
mvi a, 1 ;error condition
ret ;replaced when filled-in

;
; the remainder of the cbios is reserved uninitialized
; data area, and does not need to be a Part of the
; system memory image (the space must be available,
; however, between"begdat" and"enddat").
;
track: ds 2 ;two bytes for expansion
sector: ds 2 ;two bytes for expansion
dmaad: ds 2 ;direct memory address
diskno: ds 1 ;disk number 0-15
;
; scratch ram area for bdos use
begdat equ $;beginning of data area
dirbf: ds 128 ;scratch directory area
all00: ds 31 ;allocation vector 0
all01: ds 31 ;allocation vector 1
all02: ds 31 ;allocation vector 2
all03: ds 31 ;allocation vector 3
chk00: ds 16 ;check vector 0
chk01: ds 16 ;check vector 1
chk02: ds 16 ;check vector 2
chk03: ds 16 ;check vector 3
;
enddat equ $;end of data area
datsiz equ $-begdat; ;size of data area

end

Appendix B : A Sekletal CBIOS CP/M Operating System Manual

B-7

 ; COMBINED GETSYS AND PUTSYS PROGRAMS FROM
 ; SEC 6.4
 ;
 ; START THE PROGRAMS AT THE BASE OF THE TPA
 0100 ORG 0100H

 0014 = MSIZE EQU 20 ;SIZE OF CP/M IN KBYTES

 ;"BIAS" IS THE AMOUNT TO ADD TO ADDRESSES FOR > 20K
 ; (REFERRED TO AS"B" THROUGHOUT THE TEXT)
 0000 = BIAS EQU (MSIZE-20)*1024
 3400 = CCP EQU 3400H+BIAS
 3C00 = BDOS EQU CCP+0800H
 4A00 = BIOS EQU CCP+1600H

 ; GETSYS PROGRAMS TRACKS 0 AND 1 TO MEMORY AT 3880H + BIAS
 ; REGISTER USAGE
 ; A (SCRATCH REGISTER)
 ; B TRACK COUNT (0...76)
 ; C SECTOR COUNT (1...26)
 ; D,E (SCRATCH REGISTER PAIR)
 ; H,L LOAD ADDRESS
 ; SP SET TO TRACK ADDRESS

 GSTART: ;START OF GETSYS
 0100 318033 LXI SP,CCP-0080H ;CONVENIENT PLACE
 0103 218033 LXI H,CCP-0080H;SET INITIAL LOAD
 0106 0600 MVI B,0 ;START WITH TRACK
 RD$TRK: ;READ NEXT TRACK
 0108 0E01 MVI C,1 ;EACH TRACK START
 RD$SEC:
 010A CD0003 CALL READ$SEC ;GET THE NEXT SECTOR
 010D 118000 LXI D,128 ;OFFSET BY ONE SECTOR
 0110 19 DAD D ; (HL=HL+128)
 0111 0C INR C ;NEXT SECTOR
 0112 79 MOV A,C ;FETCH SECTOR NUMBER
 0113 FE1B CPI 27 ;AND SEE IF LAST
 0115 DA0A01 JC RDSEC ;<, DO ONE MORE

 ;ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK

 0118 04 INR B ;TRACK = TRACK+1
 0119 78 MOV A,B ;CHECK FOR LAST
 011A FE02 CPI 2 ;TRACK = 2 ?
 011C DA0801 JC RD$TRK ;<, DO ANOTHER

Appendix B : A Sekletal CBIOS CP/M Operating System Manual

C-1

 ;ARRIVE HERE AT END OF LOAD, HALT FOR LACK OF ANYTHING
 ;BETTER

 011F FB EI
 0120 76 HLT

 ; PUTSYS PROGRAM, PLACES MEMORY IMAGE
 ; STARTING AT
 ; 3880H + BIAS BACK TO TRACKS 0 AND 1
 ; START THIS PROGRAM AT THE NEXT PAGE BOUNDARY
 0200 ORG ($+0100H) AND 0FF00H
 PUT$SYS:
 0200 318033 LXI SP,CCP-0080H ;CONVENIENT PLACE
 0203 218033 LXI H,CCP-0080H ;START OF DUMP
 0206 0600 MVI B,0 ;START WITH TRACK
 WR$TRK:
 0208 0605 MVI B,L ;START WITH SECTOR
 WR$SEC:
 020A CD0004 CALL WRITE$SEC ;WRITE ONE SECTOR
 020D 118000 LXI D,128 ;LENGTH OF EACH
 0210 19 DAD D ;<HL>=<HL> + 128
 0211 0C INR C ; <C>=<C> + 1
 0212 79 MOV A,C ;SEE IF
 0213 FE1B CPI 27 ;PAST END OF TRACK
 0215 DA0A02 JC WR$SEC ;NO, DO ANOTHER

 ;ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK

 0218 04 INR B ;TRACK = TRACK+1
 0219 78 MOV A,B ;SEE IF
 021A FE02 CPI 2 ;LAST TRACK
 021C DA0802 JC WR$TRK ;NO, DO ANOTHER

 ; DONE WITH PUTSYS, HALT FOR LACK OF ANYTHING
 ; BETTER
 021F FB EI
 0220 76 HLT

 ;USER SUPPLIED SUBROUTINES FOR SECTOR READ AND WRITE

 ; MOVE TO NEXT PAGE BOUNDARY
 0300 ORG ($+0100H) AND 0FF00H

Appendix C : A Skeletal GETSYS/PUTSYS Program CP/M Operating System Manual

C-2

 READ$SEC:
 ;READ THE NEXT SECTOR
 ;TRACK IN ,
 ;SECTOR IN <C>
 ;DMAADDR IN<HL>

 0300 C5 PUSH B
 0301 E5 PUSH H

 ;USER DEFINED READ OPERATION GOES HERE
 0302 DS 64
 0342 E1 POP H
 0343 C1 POP B
 0344 C9 RET

 0400 ORG ($+100H) AND 0FF00H ;ANOTHER PAGE
 ; BOUNDARY
 WRITE$SEC:

 ;SAME PARAMETERS AS READ$SEC

 0400 C5 PUSH B
 0401 E5 PUSH H

 ;USER DEFINED WRITE OPERATION GOES HERE
 0402 DS 64
 0442 E1 POP H
 0443 C1 POP B
 0444 C9 RET

 ;END OF GETSYS/PUTSYS PROGRAM

 0445 END

Appendix C : A Skeletal GETSYS/PUTSYS Program CP/M Operating System Manual

C-3

title 'mds cold start loader at 3000h'
;
; mds-800 cold start loader for cp/m 2.0
;
; version 2.0 august, 1979
;
false equ 0
true equ not false
testing equ false ;if true, then go to mon80 on errors
;

if testing
bias equ 03400h

endif
if not testing

bias equ 0000h
endif

cpmb equ bias ;base of dos load
bdos equ 806h+bias ;entry to dos for calls
bdose equ 1880h+bias ;end of dos load
boot equ 1600h+bias ;cold start entry point
rboot equ boot+3 ;warm start entry point
;

org 03000h ;loaded down from hardware boot at 3000H
;
bdosl equ bdose-cpmb
ntrks equ 2 ;number of tracks to read
bdoss equ bdosl/128 ;number of sectors in dos
bdoso equ 25 ;number of bdos sectors on track 0
bdos1 equ bdoss-bdoso ;number of sectors on track 1
;
mon80 equ 0f800h ;intel monitor base
rmon80equ 0ff0fh ;restart location for mon80
base equ 078h ;'base' used by controller
rtype equ base+1 ;result type
rbyte equ base+3 ;result byte
reset equ base+7 ;reset controller
;
;
dstat equ base ;disk status port
ilow equ base+1 ;low iopb address
ihigh equ base+2 ;high iopb address
bsw equ 0ffh ;boot switch
recal equ 3h ;recalibrate selected drive
readf equ 4h ;disk read function
stack equ 100h ;use end of boot for stack

Appendix C : A Skeletal GETSYS/PUTSYS Program CP/M Operating System Manual

D-1

;
rstart:

lxi sp,stack; ;in case of call to mon80
; clear disk status

in rtype
in rbyte

; check if boot switch is off
coldstart:

in bsw
ani 02h ;switch on?
jnz coldstart

; clear the controller
out reset ;logic cleared

;
;

mvi b,ntrks ;number of tracks to read
lxi h,iopbo

;
start:
;
; read first/next track into cpmb

mov a,l
out ilow
mov a,h
out ihigh

waito: in dstat
ani 4
jz waito

;
; check disk status

in rtype
ani 11b
cpi 2

;
if testing
cnc rmon80 ;go to monitor if 11 or 10
endif
if not testing
jnc rstart ;retry the load
endif

;
in rbyte ;i/o complete, check status

; if not ready, then go to mon80
ral
cc rmon80 ;not ready bit set

Appendix D : MDS-800 Cold Start Loader CP/M Operating System Manual

D-2

rar ;restore
ani 11110b ;overrun/addr err/seek/crc/xxxx

;
if testing
cnz rmon80 ;go to monitor
endif
if not testing
jnz rstart ;retry the load
endif

;
;

lxi d,iopbl ;length of iopb
dad d ;addressing next iopb
dcr b ;count down tracks
jnz start

;
;
; jmp to boot to print initial message, and set up jmps

jmp boot
;
; parameter blocks
iopbo: db 80h ;iocw, no update

db readf ;read function
db bdoso ;*sectors to read on track 0
db 0 ;track 0
db 2 ;start with sector 2 on track 0
dw cpmb ;start at base of bdos

iopbl equ $-iopbo
;
iopb1: db 80h

db readf
db bdos1 ;sectors to read on track 1
db 1 ;track 1
db 1 ;sector 1
dw cpmb+bdoso*128 ;base of second read

;
end

Appendix D : MDS-800 Cold Start Loader CP/M Operating System Manual

D-3

 ;THIS IS A SAMPLE COLD START LOADER, WHICH, WHEN
 ;MODIFIED
 ;RESIDES ON TRACK 00, SECTOR 01 (THE FIRST SECTOR ON THE
 ;DISKETTE), WE ASSUME THAT THE CONTROLLER HAS LOADED
 ;THIS SECTOR INTO MEMORY UPON SYSTEM START-UP (THIS
 ;PROGRAM CAN BE KEYED-IN, OR CAN EXIST IN READ-ONLY
 ;MEMORY
 ;BEYOND THE ADDRESS SPACE OF THE CP/M VERSION YOU ARE
 ;RUNNING). THE COLD START LOADER BRINGS THE CP/M SYSTEM
 ;INTO MEMORY AT"LOADP" (3400H +"BIAS"). IN A 20K
 ;MEMORY SYSTEM, THE VALUE OF"BIAS" IS 000H, WITH
 ;LARGE
 ;VALUES FOR INCREASED MEMORY SIZES (SEE SECTION 2).
 ;AFTER
 ;LOADING THE CP/M SYSTEM, THE COLD START LOADER
 ;BRANCHES
 ;TO THE "BOOT" ENTRY POINT OF THE BIOS, WHICH BEGINS AT
 ; "BIOS" +"BIAS". THE COLD START LOADER IS NOT USED UN-
 ;TIL THE SYSTEM IS POWERED UP AGAIN, AS LONG AS THE BIOS
 ;IS NOT OVERWRITTEN. THE ORIGIN IS ASSUMED AT 0000H, AND
 ;MUST BE CHANGED IF THE CONTROLLER BRINGS THE COLD START
 ;LOADER INTO ANOTHER AREA, OR IF A READ-ONLY MEMORY
 ;AREA
 ;IS USED.
 0000 ORG 0 ;BASE OF RAM IN
 ;CP/M
 0014 = MSIZE EQU 20 ;MIN MEM SIZE IN
 ;KBYTES
 0000 = BIAS EQU (MSIZE-20)*1024 ;OFFSET FROM 20K
 ;SYSTEM
 3400 = CCP EQU 3400H+BIAS ;BASE OF THE CCP
 4A00 = BIOS EQU CCP+1600H ;BASE OF THE BIOS
 0300 = BIOSL EQU 0300H ;LENGTH OF THE BIOS
 4A00 = BOOT EQU BIOS
 1900 = SIZE EQU BIOS+BIOSL-CCP ;SIZE OF CP/M
 ;SYSTEM
 0032 = SECTS EQU SIZE/128 ;# OF SECTORS TO LOAD
 ;
 ; BEGIN THE LOAD OPERATION

 COLD:
 0000 010200 LXI B,2 ;B=0, C=SECTOR 2
 0003 1632 MVI D,SECTS ;D=# SECTORS TO
 ;LOAD
 0005 210034 LXI H,CCP ;BASE TRANSFER

Appendix D : MDS-800 Cold Start Loader CP/M Operating System Manual

E-1

 ;ADDRESS
 LSECT: ;LOAD THE NEXT SECTOR

 ; INSERT INLINE CODE AT THIS POINT TO
 ; READ ONE 128 BYTE SECTOR FROM THE
 ; TRACK GIVEN IN REGISTER B, SECTOR
 ; GIVEN IN REGISTER C,
 ; INTO THE ADDRESS GIVEN BY <HL>
 ;BRANCH TO LOCATION "COLD" IF A READ ERROR OCCURS
 ;
 ;
 ;
 ;
 ; USER SUPPLIED READ OPERATION GOES
 ; HERE...
 ;
 ;
 ;
 ;
 0008 C36B00 JMP PAST$PATCH ;REMOVE THIS
 ;WHEN PATCHED
 000B DS 60H

 PAST$PATCH:
 ;GO TO NEXT SECTOR IF LOAD IS INCOMPLETE
 006B 15 DCR D ;SECTS=SECTS-1
 006C CA004A JZ BOOT ;HEAD. FOR THE BIOS

 ; MORE SECTORS TO LOAD
 ;

 ;WE AREN'T USING A STACK, SO USE <SP> AS SCRATCH
 ;REGISTER
 ; TO HOLD THE LOAD ADDRESS INCREMENT
 006F 318000 LXI SP,128 ;128 BYTES PER
 ;SECTOR
 0072 39 DAD SP ;<HL> = <HL> + 128
 0073 0C INR C ;SECTOR=SECTOR + 1
 0074 79 MOV A,C
 0075 FE1B CPI 27 ;LAST SECTOR OF
 ;TRACK?
 0077 DA0800 JC LSECT ;NO, GO READ
 ;ANOTHER

 ;END OF TRACK, INCREMENT TO NEXT TRACK

Appendix E : A Skeletal Cold Start Loader CP/M Operating System Manual

E-2

 007A 0E01 MVI C,1 ;SECTOR = 1
 007C 04 INR B ;TRACK = TRACK + 1
 007D C30800 JMP LSECT ;FOR ANOTHER GROUP
 0080 END ;OF BOOT LOADER

Appendix E : A Skeletal Cold Start Loader CP/M Operating System Manual

E-3

; CP/M 2.0 disk re-definition library
;
; Copyright (c) 1979
; Digital Research
; Box 579
; Pacific Grove, CA
; 93950
;
; CP/M logical disk drives are defined using the
; macros given below, where the sequence of calls
; is:
;
; disks n
; diskdef parameter-list-0
; diskdef parameter-list-1
; ...
; diskdef parameter-list-n
; endef
;
; where n is the number of logical disk drives attached
; to the CP/M system, and parameter-list-i defines the
; characteristics of the ith drive (i=0,1,...,n-1)
;
; each parameter-list-i takes the form
; dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs,[0]
; where
; dn is the disk number 0,1,...,n-1
; fsc is the first sector number (usually 0 or 1)
; lsc is the last sector number on a track
; skf is optional "skew factor" for sector translate
; bls is the data block size (1024,2048,...,16384)
; dks is the disk size in bls increments (word)
; dir is the number of directory elements (word)
; cks is the number of dir elements to checksum
; ofs is the number of tracks to skip (word)
; [0] is an optional 0 which forces 16K/directory entry
;
; for convenience, the form
; dn,dm
; defines disk dn as having the same characteristics as
; a previously defined disk dm.
;
; a standard four drive CP/M system is defined by
; disks 4
; diskdef 0,1,26,6,1024,243,64,64,2

Appendix E : A Skeletal Cold Start Loader CP/M Operating System Manual

F-1

; dsk set 0
; rept 3
; dsk set dsk+1
; diskdef %dsk,0
; endm
; endef
;
; the value of "begdat" at the end of assembly defines the
; beginning of the uninitialize ram area above the bios,
; while the value of "enddat" defines the next location
; following the end of the data area. the size of this
; area is given by the value of "datsiz" at the end of the
; assembly. note that the allocation vector will be quite
; large if a large disk size is defined with a small block
; size.
;
dskhdr macro dn
;; define a single disk header list
dpe&dn: dw xlt&dn,0000h ;translate table

dw 0000h,0000h ;scratch area
dw dirbuf,dpb&dn ;dir buff,parm block
dw csv&dn,alv&dn ;check, alloc vectors
endm

;
disks macro nd
;; define nd disks
ndisks set nd ;;for later reference
dpbase equ $;base of disk parameter blocks
;; generate the nd elements
dsknxt set 0

rept nd
dskhdr %dsknxt

dsknxt set dsknxt+1
endm
endm

;
dpbhdr macro dn
dpb&dn equ $;disk parm block

endm
;
ddb macro data,comment
;; define a db statement

db data comment
endm

;

Appendix F : CP/M Disk Definition Library CP/M Operating System Manual

F-2

ddw macro data,comment
;; define a dw statement

dw data comment
endm

;
gcd macro m,n
;; greatest common divisor of m,n
;; produces value gcdn as result
;; (used in sector translate table generation)
gcdm set m ;;variable for m
gcdn set n ;;variable for n
gcdr set 0 ;;variable for r

rept 65535
gcdx set gcdm/gcdn
gcdr set gcdm - gcdx*gcdn

if gcdr = 0
exitm
endif

gcdm set gcdn
gcdn set gcdr

endm
endm

;
diskdef macro dn,fsc,lsc,skf,bls,dks,dir,cks,ofs,k16
;; generate the set statements for later tables

if nul lsc
;; current disk dn same as previous fsc
dpb&dn equ dpb&fsc ;equivalent parameters
als&dn equ als&fsc ;same allocation vector size
css&dnequ css&fsc ;same checksum vector size
xlt&dn equ xlt&fsc ;same translate table

else
secmaxset lsc-(fsc) ;;sectors 0...secmax
sectors set secmax+1;;number of sectors
als&dn set (dks)/8 ;;size of allocation vector

if ((dks) mod 8) ne 0
als&dn set als&dn+1

endif
css&dnset (cks)/4 ;;number of checksum elements
;; generate the block shift value
blkval set bls/128;;number of sectors/block
blkshf set 0 ;;counts right 0's in blkval
blkmsk set 0 ;;fills with 1's from right

rept 16 ;;once for each bit position
if blkval=1

Appendix F : CP/M Disk Definition Library CP/M Operating System Manual

F-3

exitm
endif

;; otherwise, high order 1 not found yet
blkshf set blkshf+1
blkmsk set (blkmsk shl 1) or 1
blkval set blkval/2

endm
;; generate the extent mask byte
blkval set bls/1024 ;;number of kilobytes/block
extmsk set 0 ;;fill from right with 1's

rept 16
if blkval=1
exitm
endif

;; otherwise more to shift
extmsk set (extmsk shl 1) or 1
blkval set blkval/2

endm
;; may be double byte allocation

if (dks) > 256
extmsk set (extmsk shr 1)

endif
;; may be optional [0] in last position

if not nul k16
extmsk set k16

endif
;; now generate directory reservation bit vector
dirrem set dir ;;# remaining to process
dirbks set bls/32 ;;number of entries per block
dirblk set 0 ;;fill with 1's on each loop

rept 16
if dirrem=0
exitm
endif

;; not complete, iterate once again
;; shift right and add 1 high order bit
dirblk set (dirblk shr 1) or 8000h

if dirrem > dirbks
dirrem set dirrem-dirbks

else
dirrem set 0

endif
endm
dpbhdr dn ;;generate equ $
ddw %sectors,<;sec per track>

Appendix F : CP/M Disk Definition Library CP/M Operating System Manual

F-4

ddb %blkshf,<;block shift>
ddb %blkmsk,<;block mask>
ddb %extmsk,<;extnt mask>
ddw %(dks)-1,<;disk size-1>
ddw %(dir)-1,<;directory max>
ddb %dirblk shr 8,<;alloc0>
ddb %dirblk and 0ffh,<;alloc1>
ddw %(cks)/4,<;check size>
ddw %ofs,<;offset>

;; generate the translate table, if requested
if nul skf

xlt&dn equ 0 ;no xlate table
else
if skf = 0

xlt&dn equ 0 ;no xlate table
else

;; generate the translate table
nxtsec set 0 ;;next sector to fill
nxtbas set 0 ;;moves by one on overflow

gcd %sectors,skf
;; gcdn = gcd(sectors,skew)
neltst set sectors/gcdn
;; neltst is number of elements to generate
;; before we overlap previous elements
nelts set neltst ;;counter
xlt&dn equ $;translate table

rept sectors ;;once for each sector
if sectors < 256
ddb %nxtsec+(fsc)
else
ddw %nxtsec+(fsc)
endif

nxtsec set nxtsec+(skf)
if nxtsec >= sectors

nxtsec set nxtsec-sectors
endif

nelts set nelts-1
if nelts = 0

nxtbas set nxtbas+1
nxtsec set nxtbas
nelts set neltst

endif
endm
endif ;;end of nul fac test
endif ;;end of nul bls test

Appendix F : CP/M Disk Definition Library CP/M Operating System Manual

F-5

endm
;
defds macro lab,space
lab: ds space

endm
;
lds macro lb,dn,val

defds lb&dn,%val&dn
endm

;
endef macro
;; generate the necessary ram data areas
begdat equ $
dirbuf: ds 128 ;directory access buffer
dsknxt set 0

rept ndisks ;;once for each disk
lds alv,%dsknxt,als
lds csv,%dsknxt,css

dsknxt set dsknxt+1
endm

enddat equ $
datsiz equ $-begdat
;; db 0 at this point forces hex record

endm
;

Appendix F : CP/M Disk Definition Library CP/M Operating System Manual

F-6

 ;***
 ;* *
 ;* SECTOR DEBLOCKING ALGORITHMS FOR CP/M 2.0 *
 ;* *
 ;***
 ;
 ; UTILITY MACRO TO COMPUTE SECTOR MASK
 SMASK MACRO HBLK
 ;; COMPUTE LOG2(HBLK), RETURN @X AS RESULT
 ;; (2 ** @X = HBLK ON RETURN)
 @Y SET HBLK
 @X SET 0
 ;; COUNT RIGHT SHIFTS OF @Y UNTIL = 1
 REPT 8
 IF @Y = 1
 EXITM
 ENDIF
 ;; @Y IS NOT 1, SHIFT RIGHT ONE POSITION
 @Y SET @Y SHR 1
 @X SET @X + 1
 ENDM
 ENDM
 ;
 ;***
 ;* *
 ;* CP/M TO HOST DISK CONSTANTS *
 ;* *
 ;***
 0800 = BLKSIZEQU 2048 ;CP/M ALLOCATION SIZE
 0200 = HSTSIZ EQU 512 ;HOST DISK SECTOR SIZE
 0014 = HSTSPTEQU 20 ;HOST DISK SECTORS/TRK
 0004 = HSTBLK EQU HSTSIZ/128 ;CP/M SECTS/HOST BUFF
 0050 = CPMSPT EQU HSTBLK * HSTSPT ;CP/M SECTORS/TRACK
 0003 = SECMSK EQU HSTBLK-1 ;SECTOR MASK
 SMASK HSTBLK ;COMPUTE SECTOR MASK
 0002 = SECSHFEQU @X ;LOG2(HSTBLK)
 ;
 ;***
 ;* *
 ;* BDOS CONSTANTS ON ENTRY TO WRITE *
 ;* *
 ;***
 0000 = WRALLEQU 0 ;WRITE TO ALLOCATED
 0001 = WRDIR EQU 1 ;WRITE TO DIRECTORY
 0002 = WRUALEQU 2 ;WRITE TO UNALLOCATED

Appendix F : CP/M Disk Definition Library CP/M Operating System Manual

G-1

 ;
 ;***
 ;* *
 ;* THE BDOS ENTRY POINTS GIVEN BELOW SHOW THE *
 ;* CODE WHICH IS RELEVANT TO DEBLOC *
 ;***
 0000 = WRALLEQU 0 ;WRITE TO ALLOCATED
 0001 = WRDIR EQU 1 ;WRITE ;
 ; DISKDEF MACRO, OR HAND CODED TABLES GO HERE
 0000 = DPBASE EQU $;DISK PARAM BLOCK BASE
 ;
 BOOT:
 WBOOT:
 ;ENTER HERE ON SYSTEM BOOT TO INITIALIZE
 0000 AF XRA A ;0 TO ACCUMULATOR
 0001 326A01 STA HSTACT ;HOST BUFFER INACTIVE
 0004 326C01 STA UNACNT ;CLEAR UNALLOC COUNT
 0007 C9 RET
 ;
 HOME:
 ;HOME THE SELECTED DISK
 HOME:
 0008 3A6B01 LDA HSTWRT ;CHECK FOR PENDING WRITE
 000B B7 ORA A
 000C C21200 JNZ HOMED
 000F 326A01 STA HSTACT ;CLEAR HOST ACTIVE FLAG
 HOMED:
 0012 C9 RET
 ;
 SELDSK:
 ;SELECT DISK
 0013 79 MOV A,C ;SELECTED DISK NUMBER
 0014 326101 STA SEKDSK ;SEEK DISK NUMBER
 0017 6F MOV L,A ;DISK NUMBER TO HL
 0018 2600 MVI H,0
 REPT 4 ;MULTIPLY BY 16
 DAD H
 ENDM
 001A+29 DAD H
 001B+29 DAD H
 001C+29 DAD H
 001D+29 DAD H
 001E 110000 LXI D,DPBASE ;BASE OF PARM BLOCK
 0021 19 DAD D ;HL=.DPB(CURDSK)
 0022 C9 RET

Appendix G : Blocking and Deblocking Algorithms CP/M Operating System Manual

G-2

 ;
 SETTRK:
 ;SET TRACK GIVEN BY REGISTERS BC
 0023 60 MOV H,B
 0024 69 MOV L,C
 0025 226201 SHLD SEKTRK ;TRACK TO SEEK
 0028 C9 RET
 ;
 SETSEC:
 ;SET SECTOR GIVEN BY REGISTER C
 0029 79 MOV A,C
 002A 326401 STA SEKSEC ;SECTOR TO SEEK
 002D C9 RET
 ;
 SETDMA:
 ;SET DMA ADDRESS GIVEN BY BC
 002E 60 MOV H,B
 002F 69 MOV L,C
 0030 227501 SHLD DMAADR
 0033 C9 RET
 ;
 SECTRAN:
 ;TRANSLATE SECTOR NUMBER BC
 0034 60 MOV H,B
 0035 69 MOV L,C
 0036 C9 RET
 ;
 ;***
 ;* *
 ;* THE READ ENTRY POINT TAKES THE PLACE OF *
 ;* THE PREVIOUS BIOS DEFINTION FOR READ. *
 ;* *
 ;***
 READ:
 ;READ THE SELECTED CP/M SECTOR
 0037 AF XRA A
 0038 326C01 STA UNACNT
 003B 3E01 MVI A,1
 003D 327301 STA READOP ;READ OPERATION
 0040 327201 STA RSFLAG ;MUST READ DATA
 0043 3E02 MVI A,WRUAL
 0045 327401 STA WRTYPE ;TREAT AS UNALLOC
 0048 C3B600 JMP RWOPER ;TO PERFORM THE READ
 ;
 ;***

Appendix G : Blocking and Deblocking Algorithms CP/M Operating System Manual

G-3

 ;* *
 ;* THE WRITE ENTRY POINT TAKES THE PLACE OF *
 ;* THE PREVIOUS BIOS DEFINTION FOR WRITE. *
 ;* *
 ;***
 WRITE:
 ;WRITE THE SELECTED CP/M SECTOR
 004B AF XRA A ;0 TO ACCUMULATOR
 004C 327301 STA READOP ;NOT A READ OPERATION
 004F 79 MOV A,C ;WRITE TYPE IN C
 0050 327401 STA WRTYPE
 0053 FE02 CPI WRUAL ;WRITE UNALLOCATED?
 0055 C26F00 JNZ CHKUNA ;CHECK FOR UNALLOC
 ;
 ; WRITE TO UNALLOCATED, SET PARAMETERS
 0058 3E10 MVI A,BLKSIZ/128 ;NEXT UNALLOC RECS
 005A 326C01 STA UNACNT
 005D 3A6101 LDA SEKDSK ;DISK TO SEEK
 0060 326D01 STA UNADSK ;UNADSK = SEKDSK
 0063 2A6201 LHLD SEKTRK
 0066 226E01 SHLD UNATRK ;UNATRK = SECTRK
 0069 3A6401 LDA SEKSEC
 006C 327001 STA UNASEC ;UNASEC = SEKSEC
 ;
 CHKUNA:
 ;CHECK FOR WRITE TO UNALLOCATED SECTOR
 006F 3A6C01 LDA UNACNT ;ANY UNALLOC REMAIN?
 0072 B7 ORA A
 0073 CAAE00 JZ ALLOC ;SKIP IF NOT
 ;
 ; MORE UNALLOCATED RECORDS REMAIN
 0076 3D DCR A ;UNACNT = UNACNT-1
 0077 326C01 STA UNACNT
 007A 3A6101 LDA SEKDSK ;SAME DISK?
 007D 216D01 LXI H,UNADSK
 0080 BE CMP M ;SEKDSK = UNADSK?
 0081 C2AE00 JNZ ALLOC ;SKIP IF NOT
 ;
 ; DISKS ARE THE SAME
 0084 216E01 LXI H,UNATRK
 0087 CD5301 CALL SEKTRKCMP ;SEKTRK = UNATRK?
 008A C2AE00 JNZ ALLOC ;SKIP IF NOT
 ;
 ; TRACKS ARE THE SAME
 008D 3A6401 LDA SEKSEC ;SAME SECTOR?

Appendix G : Blocking and Deblocking Algorithms CP/M Operating System Manual

G-4

 0090 217001 LXI H,UNASEC
 0093 BE CMP M ;SEKSEC = UNASEC?
 0094 C2AE00 JNZ ALLOC ;SKIP IF NOT
 ;
 ; MATCH, MOVE TO NEXT SECTOR FOR FUTURE REF
 0097 34 INR M ;UNASEC = UNASEC+1
 0098 7E MOV A,M ;END OF TRACK?
 0099 FE50 CPI CPMSPT ;COUNT CP/M SECTORS
 009B DAA700 JC NOOVF ;SKIP IF NO OVERFLOW
 ;
 ; OVERFLOW TO NEXT TRACK
 009E 3600 MVI M,0 ;UNASEC = 0
 00A0 2A6E01 LHLD UNATRK
 00A3 23 INX H
 00A4 226E01 SHLD UNATRK ;UNATRK = UNATRK+1
 ;
 NOOVF:
 ;MATCH FOUND, MARK AS UNNECESSARY READ
 00A7 AF XRA A ;0 TO ACCUMULATOR
 00A8 327201 STA RSFLAG ;RSFLAG = 0
 00AB C3B600 JMP RWOPER ;TO PERFORM THE WRITE
 ;
 ALLOC:
 ;NOT AN UNALLOCATED RECORD, REQUIRES PRE-READ
 00AE AF XRA A ;0 TO ACCUM
 00AF 326C01 STA UNACNT ;UNACNT = 0
 00B2 3C INR A ;1 TO ACCUM
 00B3 327201 STA RSFLAG ;RSFLAG = 1
 ;
 ;***
 ;* *
 ;* COMMON CODE FOR READ AND WRITE FOLLOWS *
 ;* *
 ;***
 RWOPER:
 ;ENTER HERE TO PERFORM THE READ/WRITE
 00B6 AF XRA A ;ZERO TO ACCUM
 00B7 327101 STA ERFLAG ;NO ERRORS (YET)
 00BA 3A6401 LDA SEKSEC ;COMPUTE HOST SECTOR
 REPT SECSHF
 ORA A ;CARRY = 0
 RAR ;SHIFT RIGHT
 ENDM
 00BD+B7 ORA A ;CARRY = 0
 00BE+1F RAR ;SHIFT RIGHT

Appendix G : Blocking and Deblocking Algorithms CP/M Operating System Manual

G-5

 00BF+B7 ORA A ;CARRY = 0
 00C0+1F RAR ;SHIFT RIGHT
 00C1 326901 STA SEKHST ;HOST SECTOR TO SEEK
 ;
 ; ACTIVE HOST SECTOR?
 00C4 216A01 LXI H,HSTACT ;HOST ACTIVE FLAG
 00C7 7E MOV A,M
 00C8 3601 MVI M,1 ;ALWAYS BECOMES 1
 00CA B7 ORA A ;WAS IT ALREADY?
 00CB CAF200 JZ FILHST ;FILL HOST IF NOT
 ;
 ; HOST BUFFER ACTIVE, SAME AS SEEK BUFFER?
 00CE 3A6101 LDA SEKDSK
 00D1 216501 LXI H,HSTDSK ;SAME DISK?
 00D4 BE CMP M ;SEKDSK = HSTDSK?
 00D5 C2EB00 JNZ NOMATCH
 ;
 ; SAME DISK, SAME TRACK?
 00D8 216601 LXI H,HSTTRK
 00DB CD5301 CALL SEKTRKCMP ;SEKTRK = HSTTRK?
 00DE C2EB00 JNZ NOMATCH
 ;
 ; SAME DISK, SAME TRACK, SAME BUFFER?
 00E1 3A6901 LDA SEKHST
 00E4 216801 LXI H,HSTSEC ;SEKHST = HSTSEC?
 00E7 BE CMP M
 00E8 CA0F01 JZ MATCH ;SKIP IF MATCH
 ;
 NOMATCH:
 ;PROPER DISK, BUT NOT CORRECT SECTOR
 00EB 3A6B01 LDA HSTWRT ;HOST WRITTEN?
 00EE B7 ORA A
 00EF C45F01 CNZ WRITEHST ;CLEAR HOST BUFF
 ;
 FILHST:
 ;MAY HAVE TO FILL THE HOST BUFFER
 00F2 3A6101 LDA SEKDSK
 00F5 326501 STA HSTDSK
 00F8 2A6201 LHLD SEKTRK
 00FB 226601 SHLD HSTTRK
 00FE 3A6901 LDA SEKHST
 0101 326801 STA HSTSEC
 0104 3A7201 LDA RSFLAG ;NEED TO READ?
 0107 B7 ORA A
 0108 C46001 CNZ READHST ;YES, IF 1

Appendix G : Blocking and Deblocking Algorithms CP/M Operating System Manual

G-6

 010B AF XRA A ;0 TO ACCUM
 010C 326B01 STA HSTWRT ;NO PENDING WRITE
 ;
 MATCH:
 ;COPY DATA TO OR FROM BUFFER
 010F 3A6401 LDA SEKSEC ;MASK BUFFER NUMBER
 0112 E603 ANI SECMSK ;LEAST SIGNIF BITS
 0114 6F MOV L,A ;READY TO SHIFT
 0115 2600 MVI H,0 ;DOUBLE COUNT
 REPT 7 ;SHIFT LEFT 7
 DAD H
 ENDM
 0117+29 DAD H
 0118+29 DAD H
 0119+29 DAD H
 011A+29 DAD H
 011B+29 DAD H
 011C+29 DAD H
 011D+29 DAD H
 ; HL HAS RELATIVE HOST BUFFER ADDRESS
 011E 117701 LXI D,HSTBUF
 0121 19 DAD D ;HL = HOST ADDRESS
 0122 EB XCHG ;NOW IN DE
 0123 2A7501 LHLD DMAADR ;GET/PUT CP/M DATA
 0126 0E80 MVI C,128 ;LENGTH OF MOVE
 0128 3A7301 LDA READOP ;WHICH WAY?
 012B B7 ORA A
 012C C23501 JNZ RWMOVE ;SKIP IF READ
 ;
 ; WRITE OPERATION, MARK AND SWITCH DIRECTION
 012F 3E01 MVI A,1
 0131 326B01 STA HSTWRT ;HSTWRT = 1
 0134 EB XCHG ;SOURCE/DEST SWAP
 ;
 RWMOVE:
 ;C INITIALLY 128, DE IS SOURCE, HL IS DEST
 0135 1A LDAX D ;SOURCE CHARACTER
 0136 13 INX D
 0137 77 MOV M,A ;TO DEST
 0138 23 INX H
 0139 0D DCR C ;LOOP 128 TIMES
 013A C23501 JNZ RWMOVE
 ;
 ; DATA HAS BEEN MOVED TO/FROM HOST BUFFER
 013D 3A7401 LDA WRTYPE ;WRITE TYPE

Appendix G : Blocking and Deblocking Algorithms CP/M Operating System Manual

G-7

 0140 FE01 CPI WRDIR ;TO DIRECTORY?
 0142 3A7101 LDA ERFLAG ;IN CASE OF ERRORS
 0145 C0 RNZ ;NO FURTHER PROCESSING
 ;
 ; CLEAR HOST BUFFER FOR DIRECTORY WRITE
 0146 B7 ORA A ;ERRORS?
 0147 C0 RNZ ;SKIP IF SO
 0148 AF XRA A ;0 TO ACCUM
 0149 326B01 STA HSTWRT ;BUFFER WRITTEN
 014C CD5F01 CALL WRITEHST
 014F 3A7101 LDA ERFLAG
 0152 C9 RET
 ;
 ;***
 ;* *
 ;* UTILITY SUBROUTINE FOR 16-BIT COMPARE *
 ;* *
 ;***
 SEKTRKCMP:
 ;HL = .UNATRK OR .HSTTRK, COMPARE WITH SEKTRK
 0153 EB XCHG
 0154 216201 LXI H,SEKTRK
 0157 1A LDAX D ;LOW BYTE COMPARE
 0158 BE CMP M ;SAME?
 0159 C0 RNZ ;RETURN IF NOT
 ; LOW BYTES EQUAL, TEST HIGH 1S
 015A 13 INX D
 015B 23 INX H
 015C 1A LDAX D
 015D BE CMP M ;SETS FLAGS
 015E C9 RET
 ;
 ;***
 ;* *
 ;* WRITEHST PERFORMS THE PHYSICAL WRITE TO *
 ;* THE HOST DISK, READHST READS THE PHYSICAL *
 ;* DISK. *
 ;* *
 ;***
 WRITEHST:
 ;HSTDSK = HOST DISK #, HSTTRK = HOST TRACK #,
 ;HSTSEC = HOST SECT #. WRITE "HSTSIZ" BYTES
 ;FROM HSTBUF AND RETURN ERROR FLAG IN ERFLAG.
 ;RETURN ERFLAG NON-ZERO IF ERROR
 015F C9 RET

Appendix G : Blocking and Deblocking Algorithms CP/M Operating System Manual

G-8

 ;
 READHST:
 ;HSTDSK = HOST DISK #, HSTTRK = HOST TRACK #,
 ;HSTSEC = HOST SECT #. READ "HSTSIZ" BYTES
 ;INTO HSTBUF AND RETURN ERROR FLAG IN ERFLAG.
 0160 C9 RET
 ;
 ;***
 ;* *
 ;* UNITIALIZED RAM DATA AREAS *
 ;* *
 ;***
 ;
 0161 SEKDSK: DS 1 ;SEEK DISK NUMBER
 0162 SEKTRK: DS 2 ;SEEK TRACK NUMBER
 0164 SEKSEC: DS 1 ;SEEK SECTOR NUMBER
 ;
 0165 HSTDSK: DS 1 ;HOST DISK NUMBER
 0166 HSTTRK: DS 2 ;HOST TRACK NUMBER
 0168 HSTSEC: DS 1 ;HOST SECTOR NUMBER
 ;
 0169 SEKHST: DS 1 ;SEEK SHR SECSHF
 016A HSTACT: DS 1 ;HOST ACTIVE FLAG
 016B HSTWRT: DS 1 ;HOST WRITTEN FLAG
 ;
 016C UNACNT: DS 1 ;UNALLOC REC CNT
 016D UNADSK: DS 1 ;LAST UNALLOC DISK
 016E UNATRK: DS 2 ;LAST UNALLOC TRACK
 0170 UNASEC: DS 1 ;LAST UNALLOC SECTOR
 ;
 0171 ERFLAG: DS 1 ;ERROR REPORTING
 0172 RSFLAG: DS 1 ;READ SECTOR FLAG
 0173 READOP: DS 1 ;1 IF READ OPERATION
 0174 WRTYPE: DS 1 ;WRITE OPERATION TYPE
 0175 DMAADR: DS 2 ;LAST DMA ADDRESS
 0177 HSTBUF: DS HSTSIZ ;HOST BUFFER
 ;
 ;***
 ;* *
 ;* THE ENDEF MACRO INVOCATION GOES HERE *
 ;* *
 ;***
 0377 END

Appendix G : Blocking and Deblocking Algorithms CP/M Operating System Manual

G-9

Appendix H
Glossary

address: Number representing the location of a byte in memory. Within CP/M there are two
kinds of addresses: logical and physical. A physical address refers to an absolute and unique
location within the computer's memory space. A logical address refers to the offset or
displacement of a byte in relation to a base location. A standard CP/M program is loaded at
address 0100H, the base value; the first instruction of a program has a physical address of 0100H
and a relative address or offset of 0H.

allocation vector (ALV): An allocation vector is maintained in the BIOS for each logged-in disk
drive. A vector consists of a string of bits, one for each block on the drive. The bit corresponding
to a particular block is set to one when the block has been allocated and to zero otherwise. The
first two bytes of this vector are initialized with the bytes AL0 and AL1 on, thus allocating the
directory blocks. CP/M Function 27 returns the allocation vector address.

AL0, AL1: Two bytes in the disk parameter block that reserve data blocks for the directory.
These two bytes are copied into the first two bytes of the allocation vector when a drive is logged
in. See allocation vector.

ALV: See allocation vector.

ambiguous filename: Filename that contains either of the CP/M wildcard characters, ? or *, in
the primary filename, filetype, or both. When you replace characters in a filename with these
wildcard characters, you create an ambiguous filename and can easily reference more than one
CP/M file in a single command line.

American Standard Code for Information Interchange: See ASCII.

applications program: Program designed to solve a specific problem. Typical applications
programs are business accounting packages, word processing (editing) programs and mailing list
programs.

archive attribute: File attribute controlled by the high-order bit of the t3 byte (FCB + 11) in a
directory element. This attribute is set if the file has been archived.

argument: Symbol, usually a letter, indicating a place into which you can substitute a number,
letter, or name to give an appropriate meaning to the formula in question.

ASCII: American Standard Code for Information Interchange. ASCII is a standard set of
seven-bit numeric character codes used to represent characters in memory. Each character
requires one byte of memory with the high-order bit usually set to zero. Characters can be
numbers, letters, and symbols. An ASCII file can be intelligibly displayed on the video screen or
printed on paper.

Appendix G : Blocking and Deblocking Algorithms CP/M Operating System Manual

H-1

assembler: Program that translates assembly language into the binary machine code. Assembly
language is simply a set of mnemonics used to designate the instruction set of the CPU. See
ASM in Section 3 of this manual.

back-up: Copy of a disk or file made for safekeeping, or the creation of the duplicate disk or file.

Basic Disk Operating System: See BDOS.

BDOS: Basic Disk Operating System. The BDOS module of the CP/M operating systemprovides
an interface for a user program to the operating. This interface is in the form of a set of function
calls which may be made to the BDOS through calls to location 0005H in page zero. The user
program specifies the number of the desired function in register C. User programs running under
CP/M should use BDOS functions for all I/O operations to remain compatible with other CP/M
systems and future releases. The BDOS normally resides in high memory directly below the
BIOS.

bias: Address value which when added to the origin address
of your BIOS module produces lF80H, the address of the BIOS
module in the MOVCPM image. There is also a bias value that
when added to the BOOT module origin produces 0900H, the address
of the BOOT module in the MOVCPM image. You mu'st use these
bias values with the R command under DDT or SID" when you patch
a CP/M system. If you do not, the patched system may fall to
function.

binary: Base 2 numbering system. A binary digit can have one of two values: 0 or 1. Binary
numbers are used in computers because the hardware can most easily exhibit two states: off and
on. Generally, a bit in memory represents one binary digit.

Basic Input/Output System: See BIOS.

BIOS: Basic Input/Output System. The BIOS is the only hardware-dependent module of the
CP/M system. It provides the BDOS with a set of primitive I/O operations. The BIOS is an
assembly language module usually written by the user, hardware manufacturer, or independent
software vendor, and is the key to CP/M's portability. The BIOS interfaces the CP/M system to
its hardware environment through a standardized jump table at the front of the BIOS routine and
through a set of disk parameter tables which define the disk environment. Thus, the BIOS
provides CP/M with a completely table-driven I/O system.

BIOS base: Lowest address of the BIOS module in memory, that by definition must be the first
entry point in the BIOS jump table.

bit: Switch in memory that can be set to on (1) or off (0). Bits are grouped into bytes, eight bits
to a byte, which is the smallest directly addressable unit in an Intel 8080 or Zilog Z80. By
common convention, the bits in a byte are numbered from right, 0 for the low-order bit, to left, 7

Appendix H : Glossary CP/M Operating System Manual

H-2

for the high-order bit. Bit values are often represented in hexadecimal notation by grouping the
bits from the low-order bit in groups of four. Each group of four bits can have a value from 0 to
15 and thus can easily be represented by one hexadecimal digit.

BLM: See block mask.

block: Basic unit of disk space allocation. Each disk drive has a fixed block size (BLS) defined
in its disk parameter block in the BIOS. A block can consist of 1K, 2K, 4K, 8K, or 16K
consecutive bytes. Blocks are numbered relative to zero so that each block is unique and has a
byte displacement in a file equal to the block number times the block size.

block mask (BLM): Byte value in the disk parameter block at DPB + 3. The block mask is
always one less than the number of 128 byte sectors that are in one block. Note that BLM = (2 **
BSH) - 1.

block shift (BSH): Byte parameter in the disk parameter block at DPB + 2. Block shift and block
mask (BLM) values are determined by the block size (BLS). Note that BLM = (2 ** BSH) - 1.

blocking & deblocking algorithm: In some disk subsystems the disk sector size is larger than
128 bytes, usually 256, 512, 1024, or 2048 bytes. When the host sector size is larger than 128
bytes, host sectors must be buffered in memory and the 128-byte CP/M sectors must be blocked
and deblocked by adding an additional module, the blocking and deblocking algorithm, between
the BIOS disk I/O routines and the actual disk I/O. The host sector size must be an even multiple
of 128 bytes for the algorithm to work correctly. The blocking and deblocking algorithm allows
the BDOS and BIOS to function exactly as if the entire disk consisted only of 128-byte sectors,
as in the standard CP/M installation.

BLS: Block size in bytes. See block.

boot: Process of loading an operating system into memory. A boot program is a small piece of
code that is automatically executed when you power-up or reset your computer. The boot
program loads the rest of the operating system into memory in a manner similar to a person
pulling himself up by his own bootstraps. This process is sometimes called a cold boot or cold
start. Bootstrap pocedures vary from system to system. The boot program must be customized
for the memory size and hardware environment that the operating system manages. Typically,
the boot resides on the first sector of the system tracks on your system disk. When executed, the
boot loads the remaining sectors of the system tracks into high memory at the location for which
the CP/M system has been configured. Finally, the boot transfers execution to the boot entry
point in the BIOS jump table so that the system can initialize itself. In this case, the boot
program should be placed at 900H in the SYSGEN image. Alternatively, the boot program may
be located in ROM.

bootstrap: See boot.

BSH: See block shift.

Appendix H : Glossary CP/M Operating System Manual

H-3

BTREE: General purpose file access method that has become the standard organization for
indexes in large data base systems. BTREE provides near optimum performance over the full
range of file operations, such as insertion, deletion, search, and search next.

buffer: Area of memory that temporarily stores data during the transfer of information.

built-in commands: Commands that permanently reside in memory. They respond quickly
because they are not accessed from a disk.

byte: Unit of memory or disk storage containing eight bits. A byte can represent a binary
number between 0 and 255, and is the smallest unit of memory that can be addressed directly in
8-bit CPUs such as the Intel 8080 or Zilog Z80.

CCP: Console Command Processor. The CCP is a module of the CP/M operating system. It is
loaded directly below the BDOS module and interprets and executes commands typed by the
console user. Usually these commands are programs that the CCP loads and calls. Upon
completion, a command program may return control to the CCP if it has not overwritten it. If it
has, the program can reload the CCP into memory by a warm boot operation initiated by either a
jump to zero, BDOS system reset (Function 0), or a cold boot. Except for its location in high
memory, the CCP works like any other standard CP/M program; that is, it makes only BDOS
function calls for its I/O operations.

CCP base: Lowest address of the CCP module in memory. This term sometimes refers to the
base of the CP/M system in memory, as the CCP is normally the lowest CP/M module in high
memory.

checksum vector (CSV): Contiguous data area in the BIOS, with one byte for each directory
sector to be checked, that is, CKS bytes. See CKS. A checksum vector is initialized and
maintained for each logged-in drive. Each directory access by the system results in a checksum
calculation that is compared with the one in the checksum vector. If there is a discrepancy, the
drive is set to Read-Only status. This feature prevents the user from inadvertently switching disks
without logging in the new disk. If the new disk is not logged-in, it is treated the same as the old
one, and data on it might be destroyed if writing is done.

CKS: Number of directory records to be checked summed on directory accesses. This is a
parameter in the disk parameter block located in the BIOS. If the value of CKS is zero, then no
directory records are checked. CKS is also a parameter in the diskdef macro library, where it is
the actual number of directory elements to be checked rather than the number of directory
records.

cold boot: See boot. Cold boot also refers to a jump to the boot entry. point in the BIOS jump
table.

COM: Filetype for a CP/M command file. See command file.

Appendix H : Glossary CP/M Operating System Manual

H-4

command: CP/M command line. In general, a CP/M command line has three parts: the
command keyword, command tail, and a carriage return. To execute a command, enter a CP/M
command line directly after the CP/M prompt at the console and press the carriage return or enter
key.

command file: Executable program file of filetype COM. A command file is a machine language
object module ready to be loaded and executed at the absolute address of 0100H. To execute a
command file, enter its primary filename as the command keyword in a CP/M command line.

command keyword: Name that identifies a CP/M command, usually the primary filename of a
file of type COM, or a built-in command. The command keyword precedes the command tail and
the carriage return in the command line.

command syntax: Statement that defines the correct way to enter a command. The correct
structure generally includes the command keyword, the command tail, and a carriage return. A
syntax line usually contains symbols that you should replace with actual values when you enter
the command.

command tail: Part of a command that follows the command keyword in the command line. The
command tail can include a drive specification, a filename and filetype, and options or
parameters. Some commands do not require a command tail.

CON: Mnemonic that represents the CP/M console device. For example, the CP/M command
PIP CON:=TEST.SUB displays the file TEST.SUB on the console device. The explanation of the
STAT command tells how to assign the logical device CON: to various physical devices. See
console.

concatenate: Name of the PIP operation that copies two or more separate files into one new file
in the specified sequence.

concurrency: Execution of two processes or operations simultaneously.

CONIN: BIOS entry point to a routine that reads a character from the console device.

CONOUT: BIOS entry point to a routine that sends a character to the console device.

console: Primary input/output device. The console consists of a listing device, such as a screen or
teletype, and a keyboard through which the user communicates with the operating system or
applications program.

Console Command Processor: See CCP.

CONST: BIOS entry point to a routine that returns the status of the console device.

Appendix H : Glossary CP/M Operating System Manual

H-5

control character: Nonprinting character combination. CP/M interprets some control characters
as simple commands such as line editing functions. To enter a control character, hold down the
CONTROL key and strike the specified character key.

Control Program for Microcomputers: See CP/M.

CP/M: Control Program for Microcomputers. An operating system that manages computer
resources and provides a standard systems interface to software written for a large variety of
microprocessor-based computer systems.

CP/M 1.4 compatibility: For a CP/M 2 system to be able to read correctly single-density disks
produced under a CP/M 1.4 system, the extent mask must be zero and the block size 1K. This is
because under CP/M 2 an FCB may contain more than one extent. The number of extents that
may be contained by an FCB is EXM + 1. The issue is of CP/M 1.4 compatibility also concerns
random file I/O. To perform random file I/O under CP/M 1.4, you must maintain an FCB for
each extent of the file. This scheme is upward compatible with CP/M 2 for files not exceeding
512K bytes, the largest file size supported under CP/M 1.4. If you wish to implement random I/O
for files larger than 512K bytes under CP/M 2, you must use the random read and random write
functions, BDOS functions 33, 34, and 36. In this case, only one FCB is used, and if CP/M 1.4
compatiblity is required, the program must use the return version number function, BDOS
Function 12, to determine which method to employ.

CP/M prompt: Characters that indicate that CP/M is ready to execute your next command. The
CP/M prompt consists of an upper-case letter, A-P, followed by a > character; for example, A>.
The letter designates which drive is currently logged in as the default drive. CP/M will search
this drive for the command file specified, unless the command is a built-in command or prefaced
by a select drive command: for example, B:STAT.

CP/NET: Digital Research network operating system enabling microcomputers to obtain access
to common resources via a network. CP/NET consists of MP/M masters and CP/M slaves with a
network interface between them.

CSV: See checksum vector.

cursor: One-character symbol that can appear anywhere on the console screen. The cursor
indicates the position where the next keystroke at the console will have an effect.

data file: File containing information that will be processed by a program.

deblocking: See blocking & deblocking algorithm.

default: Currently selected disk drive and user number. Any command that does not specify a
disk drive or a user number references the default disk drive and user number. When CP/M is
first invoked, the default disk drive is drive A, and the default user number is 0.

Appendix H : Glossary CP/M Operating System Manual

H-6

default buffer: Default 128-byte buffer maintained at 0080H in page zero. When the CCP loads
a COM file, this buffer is initialized to the command tall; that is, any characters typed after the
COM file name are loaded into the buffer. The first byte at 0080H contains the length of the
command tall, while the command tail itself begins at 0081H. The command tail is terminated by
a byte containing a binary zero value. The I command under DDT and SID initializes this buffer
in the same way as the CCP.

default FCB: Two default FCBs are maintained by the CCP at 005CH and 006CH in page zero.
The first default FCB is initialized from the first delimited field in the command tail. The second
default FCB is initialized from the next field in the command tail.

delimiter: Special characters that separate different items in a command line; for example, a
colon separates the drive specification from the filename. The CCP recognizes the following
characters as delimiters: . : = ; < > - , blank, and carriage return. Several CP/M commands also
treat the following as delimiter characters: , [] () $. It is advisable to avoid the use of delimiter
characters and lower-case characters in CP/M filenames.

DIR: Parameter in the diskdef macro library that specifies the number of directory elements on
the drive.

DIR attribute: File attribute. A file with the DIR attribute can be displayed by a DIR command.
The file can be accessed from the default user number and drive only.

DIRBUF: 128-byte scratchpad area for directory operations, usually located at the end of the
BIOS. DIRBUF is used by the BDOS during its directory operations. DIRBUF also refers to the
two-byte address of this scratchpad buffer in the disk parameter header at DPbase + 8 bytes.

directory: Portion of a disk that contains entries for each file on the disk. In response to the DIR
command, CP/M displays the filenames stored in the directory. The directory also contains the
locations of the blocks allocated to the files. Each file directory element is in the form of a
32-byte FCB, although one file can have several elements, depending on its size. The maximum
number of directory elements supported is specified by the drive's disk parameter block value for
DRM.

directory element: Data structure. Each file on a disk has one or more 32-byte directory
elements associated with it. There are four directory elements per directory sector. Directory
elements can also be referred to as directory FCBs.

directory entry: File entry displayed by the DIR command. Sometimes this term refers to a
physical directory element.

disk, diskette: Magnetic media used for mass storage in a computer system. Programs and data
are recorded on the disk in the same way music can be recorded on cassette tape. The CP/M
operating system must be initially loaded from disk when the computer is turned on. Diskette
refers to smaller capacity removable floppy diskettes, while disk may refer to either a diskette,

Appendix H : Glossary CP/M Operating System Manual

H-7

removable cartridge disk, or fixed hard disk. Hard disk capacities range from five to several
hundred megabytes of storage.

diskdef macro library: Library of code that when used with MAC, the Digital Research macro
assembler, creates disk definition tables such as the DPB and DPH automatically.

disk drive: Peripheral device that reads and writes information on disk. CP/M assigns a letter to
each drive under its control. For example, CP/M may refer to the drives in a four-drive system as
A, B, C, and D.

disk parameter block (DPB): Data structure referenced by one or more disk parameter headers.
The disk parameter block defines disk characteristics in the fields listed below:

 SPT is the total number of sectors per track.
 BSH is the data allocation block shift factor.
 BLM is the data allocation block mask.
 EXM is the extent mask determined by BLS and DSM.
 DSM is the maximum data block number.
 DRM is the maximum number of directory entries-1.
 AL0 reserves directory blocks.
 AL1 reserves directory blocks.
 CKS is the number of directory sectors check summed.
 OFF is the number of reserved system tracks.

The address of the disk parameter block is located in the disk parameter header at DPbase +
0AH. CP/M Function 31 returns the DPB address. Drives with the same characteristics can use
the same disk parameter header, and thus the same DPB. However, drives with different
characteristics must each have their own disk parameter header and disk parameter blocks. When
the BDOS calls the SELDSK entry point in the BIOS, SELDSK must return the address of the
drive's disk parameter header in register HL.

disk parameter header (DPH): Data structure that contains information about the disk drive
and provides a scratchpad area for certain BDOS operations. The disk parameter header contains
six bytes of scratchpad area for the BDOS, and the following five 2-byte parameters:

 XLT is the sector translation table address.
 DIRBUF is the directory buffer address.
 DPB is the disk parameter block address.
 CSV is the checksum vector address.
 ALV is the allocation vector address.

Given n disk drives, the disk parameter headers are arranged in a table whose first row of 16
bytes corresponds to drive 0, with the last row corresponding to drive n - 1.

DKS: Parameter in the diskdef macro library specifying the number of data blocks on the drive.

Appendix H : Glossary CP/M Operating System Manual

H-8

DMA: Direct Memory Access. DMA is a method of transferring data from the disk into memory
directly. In a CP/M system, the BDOS calls the BIOS entry point READ to read a sector from the
disk into the currently selected DMA address. The DMA address must be the address of a
128-byte buffer in memory, either the default buffer at 0080H in page zero, or a user-assigned
buffer in the TPA. Similarly, the BDOS calls the BIOS entry point WRITE to write the record at
the current DMA address to the disk.

DN: Parameter in the diskdef macro library specifying the logical drive number.

DPB: See disk parameter block.

DPH: See disk parameter header.

DRM: 2-byte parameter in the disk parameter block at DPB + 7. DRM is one less than the total
number of directory entries allowed for the drive. This value is related to DPB bytes AL0 and
AL1, which allocates up to 16 blocks for directory entries.

DSM: 2-byte parameter of the disk parameter block at DPB + 5. DSM is the maximum data
block number supported by the drive. The product BLS times (DSM + 1) is the total number of
bytes held by the drive. This must not exceed the capacity of the physical disk less the reserved
system tracks.

editor: Utility program that creates and modifies text files. An editor can be used for creation of
documents or creation of code for computer programs. The CP/M editor is invoked by typing the
command ED next to the system prompt on the console.

EX: Extent number field in an FCB. See extent.

executable: Ready to be run by the computer. Executable code is a series of instructions that can
be carried out by the computer. For example, the computer cannot execute names and addresses,
but it can execute a program that prints all those names and addresses on mailing labels.

execute a program: Start the processing of executable code.

EXM: See extent mask.

extent: 16K consecutive bytes in a file. Extents are numbered from 0 to 31. One extent can
contain 1, 2, 4, 8, or 16 blocks. EX is the extent number field of an FCB and is a one-byte field
at FCB + 12, where FCB labels the first byte in the FCB. Depending on the block size (BLS) and
the maximum data block number (DSM), an FCB can contain 1, 2, 4, 8, or 16 extents. The EX
field is normally set to 0 by the user but contains the current extent number during file I/O. The
term FCB folding describes FCBs containing more than one extent. In CP/M version 1.4, each
FCB contained only one extent. Users attempting to perform random record I/O and maintain

Appendix H : Glossary CP/M Operating System Manual

H-9

CP/M 1.4 compatiblity should be aware of the implications of this difference. See CP/M 1.4
compatibility.

extent mask (EXM): A byte parameter in the disk parameter block located at DPB + 3. The
value of EXM is determined by the block size (BLS) and whether the maximum data block
number (DSM) exceeds 255. There are EXM + 1 extents per directory FCB.

FCB: See File Control Block.

file: Collection of characters, instructions, or data that can be referenced by a unique identifier.
Files are usually stored on various types of media, such as disk, or magnetic tape. A CP/M file is
identified by a file specification and resides on disk as a collection of from zero to 65,536
records. Each record is 128 bytes and can contain either binary or ASCII data. Binary files
contain bytes of data that can vary in value from 0H to 0FFH. ASCII files contain sequences of
character codes delineated by a carriage return and line-feed combination; normally byte values
range from 0H to 7FH. The directory maps the file as a series of physical blocks. Although files
are defined as a sequence of consecutive logical records, these records can not reside in
consecutive sectors on the disk. See also block, directory, extent, record, and sector.

File Control Block (FCB): Structure used for accessing files on disk. Contains the drive,
filename, filetype, and other information describing a file to be accessed or created on the disk. A
file control block consists of 36 consecutive bytes specified by the user for file I/O functions.
FCB can also refer to a directory element in the directory portion of the allocated disk space.
These contain the same first 32 bytes of the FCB, but lack the current record and random record
number bytes.

filename: Name assigned to a file. A filename can include a primary filename of one to eight
characters; a filetype of zero to three characters. A period separates the primary filename from
the filetype.

file specification: Unique file identifier. A complete CP/M file specification includes a disk
drive specification followed by a colon, d:, a primary filename of one to eight characters, a
period, and a filetype of zero to three characters. For example, b:example.tex is a complete
CP/M file specification.

filetype: Extension to a filename. A filetype can be from zero to three characters and must be
separated from the primary filename by a period. A filetype can tell something about the file.
Some programs require that files to be processed have specific filetypes.

floppy disk: Flexible magnetic disk used to store information. Floppy disks come in 5 1/4- and
8-inch diameters.

FSC: Parameter in the diskdef macro library specifying the first physical sector number. This
parameter is used to determine SPT and build XLT.

Appendix H : Glossary CP/M Operating System Manual

H-10

hard disk: Rigid, platter-like, magnetic disk sealed in a container. A hard disk stores more
information than a floppy disk.

hardware: Physical components of a computer.

hexadecimal notation: Notation for base 16 values using the decimal digits and letters A, B, C,
D, E, and F to represent the 16 digits. Hexadecimal notation is often used to refer to binary
numbers. A binary number can be easily expressed as a hexadecimal value by taking the bits in
groups of 4, starting with the least significant bit, and expressing each group as a hexadecimal
digit, 0-F. Thus the bit value 1011 becomes 0BH and 10110101 becomes 0B5H.

hex file: ASCII-printable representation of a command, machine language, file.

hex file format: Absolute output of ASM and MAC for the Intel 8080 is a hex format file,
containing a sequence of absolute records that give a load address and byte values to be stored,
starting at the load address.

HOME: BIOS entry point which sets the disk head of the currently selected drive to the track
zero position.

host: Physical characteristics of a hard disk drive in a system using the blocking and deblocking
algorithm. The term, host, helps distinguish physical hardware characteristics from CP/M's
logical characteristics. For example, CP/M sectors are always 128 bytes, although the host sector
size can be a multiple of 128 bytes.

input: Data going into the computer, usually from an operator typing at the terminal or by a
program reading from the disk.

input/output: See I/O.

interface: Object that allows two independent systems to communicate with each other, as an
interface between hardware and software in a microcomputer.

I/O: Abbreviation for input/output. Usually refers to input/output operations or routines handling
the input and output of data in the computer system.

IOBYTE: A one-byte field in page zero, currently at location 0003H, that can support a
logical-to-physical device mapping for I/O. However, its implementation in your BIOS is purely
optional and might or might not be supported in a given CP/M system. The IOBYTE is easily set
using the command:

 STAT <logical device> = <physical device>

The CP/M logical devices are CON:, RDR:, PUN:, and LST:; each of these can be assigned to
one of four physical devices. The IOBYTE can be initialized by the BOOT entry point of the

Appendix H : Glossary CP/M Operating System Manual

H-11

BIOS and interpreted by the BIOS I/O entry points CONST, CONIN, CONOUT, LIST, PUNCH,
and READER. Depending on the setting of the IOBYTE, different I/O drivers can be selected by
the BIOS. For example, setting LST:=TTY: might cause LIST output to be directed to a serial
port, while setting LST:=LPT: causes LIST output to be directed to a parallel port.

K: Abbreviation for kilobyte. See kilobyte.

keyword: See command keyword.

kilobyte (K): 1024 bytes or 0400H bytes of memory. This is a standard unit of memory. For
example, the Intel 8080 supports up to 64K of memory address space or 65,536 bytes. 1024
kilobytes equal one megabyte, or over one million bytes.

linker: Utility program used to combine relocatable object modules into an absolute file ready
for execution. For example, LINK-80(TM) creates either a COM or PRL file from relocatable
REL files, such as those produced by PL/1-80(TM).

LIST: A BIOS entry point to a routine that sends a character to the list device, usually a printer.

list device: Device such as a printer onto which data can be listed or printed.

LISTST: BIOS entry point to a routine that returns the ready status of the list device.

loader: Utility program that brings an absolute program image into memory ready for execution
under the operating system, or a utility used to make such an image. For example, LOAD
prepares an absolute COM file from the assembler hex file output that is ready to be executed
under CP/M.

logged in: Made known to the operating system, in reference to drives. A drive is logged in when
it is selected by the user or an executing process. It remains selected or logged in until you
change disks in a floppy disk drive or enter CTRL-C at the command level, or until a BDOS
Function 0 is executed.

logical: Representation of something that might or might not be the same in its actual physical
form. For example, a hard disk can occupy one physical drive, yet you can divide the available
storage on it to appear to the user as if it were in several different drives. These apparent drives
are the logical drives.

logical sector: See sector.

logical-to-physical sector translation table: See XLT.

LSC: Diskdef macro library parameter specifying the last physical sector number.

Appendix H : Glossary CP/M Operating System Manual

H-12

LST: Logical CP/M list device, usually a printer. The CP/M list device is an output-only device
referenced through the LIST and LISTST entry points of the BIOS. The STAT command allows
assignment of LST: to one of the physical devices: TTY:, CRT:, LPT:, or UL1:, provided these
devices and the IOBYTE are implemented in the LIST and LISTST entry points of your CP/M
BIOS module. The CP/NET command NETWORK allows assignment of LST: to a list device on
a network master. For example, PIP LST:=TEST.SUB prints the file TEST.SUB on the list
device.

macro assembler: Assembler code translator providing macro processing facilities. Macro
definitions allow groups of instructions to be stored and substituted in the source program as the
macro names are encountered. Definitions and invocations can be nested and macro parameters
can be formed to pass arbitrary strings of text to a specific macro for substitution during
expansion.

megabyte: Over one million bytes; 1024 kilobytes. See byte, and kilobyte.

microprocessor: Silicon chip that is the central processing unit (CPU) of the microcomputer.
The Intel 8080 and the Zilog Z80 are microprocessors commonly used in CP/M systems.

MOVCPM image: Memory image of the CP/M system created by MOVCPM. This image can
be saved as a disk file using the SAVE command or placed on the system tracks using the
SYSGEN command without specifying a source drive. This image varies, depending on the
presence of a one-sector or two-sector boot. If the boot is less than 128 bytes (one sector), the
boot begins at 0900H, the CP/M system at 0980H, and the BIOS at 1F80H. Otherwise, the boot
is at 0900H, the CP/M system at 1000H, and the BIOS at 2000H. In a CP/M 1.4 system with a
one-sector boot, the addresses are the same as for the CP/M 2 system-except that the BIOS
begins at 1E80H instead of 1F80H.

MP/M: Multi-Programming Monitor control program. A microcomputer operating system
supporting multi-terminal access with multi-programming at each terminal.

multi-programming: The capability of initiating and executing more than one program at a
time. These programs, usually called processes, are time-shared, each receiving a slice of CPU
time on a round-robin basis. See concurrency.

nibble: One half of a byte, usually the high-order or low-order 4 bits in a byte.

OFF: Two-byte parameter in the disk parameter block at DPB + 13 bytes. This value specifies
the number of reserved system tracks. The disk directory begins in the first sector of track OFF.

OFS: Diskdef macro library parameter specifying the number of reserved system tracks. See
OFF.

operating system: Collection of programs that supervises the execution of other programs and
the management of computer resources. An operating system provides an orderly input/output

Appendix H : Glossary CP/M Operating System Manual

H-13

environment between the computer and its peripheral devices. It enables user-written programs to
execute safely. An operating system standardizes the use of computer resources for the programs
running under it.

option: One of many parameters that can be part of a command tall. Use options to specify
additional conditions for a command's execution.

output: Data that is sent to the console, disk, or printer.

page: 256 consecutive bytes in memory beginning on a page boundary, whose base address is a
multiple of 256 (100H) bytes. In hex notation, pages always begin at an address with a least
significant byte of zero.

page relocatable program: See PRL.

page zero: Memory region between 0000H and 0100H used to hold critical system parameters.
Page zero functions primarily as an interface region between user programs and the CP/M BDOS
module. Note that in non-standard systems this region is the base page of the system and
represents the first 256 bytes of memory used by the CP/M system and user programs running
under it.

parameter: Value in the command tail that provides additional information for the command.
Technically, a parameter is a required element of a command.

peripheral devices: Devices external to the CPU. For example, terminals, printers, and disk
drives are common peripheral devices that are not part of the processor but are used in
conjunction with it.

physical: Characteristic of computer components, generally hardware, that actually exist. In
programs, physical components can be represented by logical components.

primary filename: First 8 characters of a filename. The primary filename is a unique name that
helps the user identify the file contents. A primary filename contains one to eight characters and
can include any letter or number and some special characters. The primary filename follows the
optional drive specification and precedes the optional filetype.

PRL: Page relocatable program. A page relocatable program is stored on disk with a PRL
filetype. Page relocatable programs are easily relocated to any page boundary and thus are
suitable for execution in a nonbanked MP/M system.

program: Series of coded Instructions that performs specific tasks when executed by a
computer. A program can be written in a processor-specific language or a high-level language
that can be implemented on a number of different processors.

Appendix H : Glossary CP/M Operating System Manual

H-14

prompt: Any characters displayed on the video screen to help the user decide what the next
appropriate action is. A system prompt is a special prompt displayed by the operating system.
The alphabetic character indicates the default drive. Some applications programs have their own
special prompts. See CP/M prompt.

PUN: Logical CP/M punch device. The punch device is an output-only device accessed through
the PUNCH entry point of the BIOS. In certain implementations, PUN: can be a serial device
such as a modem.

PUNCH: BIOS entry point to a routine that sends a character to the punch device.

RDR: Logical CP/M reader device. The reader device is an input-only device accessed through
the READER entry point in the BIOS. See PUN:.

READ: Entry point in the BIOS to a routine that reads 128 bytes from the currently selected
drive, track, and sector into the current DMA address.

READER: Entry point to a routine in the BIOS that reads the next character from the currently
assigned reader device.

Read-Only (R/O): Attribute that can be assigned to a disk file or a disk drive. When assigned to
a file, the Read-Only attribute allows you to read from that file but not write to it. When assigned
to a drive, the Read-Only attribute allows you to read any file on the disk, but prevents you from
adding a new file, erasing or changing a file, renaming a file, or writing on the disk. The STAT
command can set a file or a drive to Read-Only. Every file and drive is either Read-Only or
Read-Write. The default setting for drives and files is Read-Write, but an error in resetting the
disk or changing media automatically sets the drive to Read-Only until the error is corrected. See
also ROM.

Read-Write (R/W): Attribute that can be assigned to a disk file or a disk drive. The Read-Write
attribute allows you to read from and write to a specific Read-Write file or to any file on a disk
that is in a drive set to Read-Write. A file or drive can be set to either Read-Only or Read-Write.

record: Group of bytes in a file. A physical record consists of 128 bytes and is the basic unit of
data transfer between the operating system and the application program. A logical record might
vary in length and is used to represent a unit of information. Two 64-byte employee records can
be stored in one 128-byte physical record. Records are grouped together to form a file.

recursive procedure: Code that can call itself during execution.

reentrant procedure: Code that can be called by one process while another is already executing
it. Thus, reentrant code can be shared between different users. Reentrant procedures must not be
self-modifying; that is, they must be pure code and not contain data. The data for reentrant
procedures can be kept in a separate data area or placed on the stack.

Appendix H : Glossary CP/M Operating System Manual

H-15

restart (RST): One-byte call instruction usually used during interrupt sequences and for
debugger break pointing. There are eight restart locations, RST 0 through RST 7, whose
addresses are given by the product of 8 times the restart number.

R/O: See Read-Only.

ROM: Read-Only memory. This memory can be read but not written and so is suitable for code
and preinitialized data areas only.

RST: See restart.

R/W: See Read-Write.

sector: In a CP/M system, a sector is always 128 consecutive bytes. A sector is the basic unit of
data read and written on the disk by the BIOS. A sector can be one 128-byte record in a file or a
sector of the directory. The BDOS always requests a logical sector number between 0 and
(SPT-1). This is typically translated into a physical sector by the BIOS entry point SECTRAN. In
some disk subsystems, the disk sector size is larger than 128 bytes, usually a power of two, such
as 256, 512, 1024, or 2048 bytes. These disk sectors are always referred to as host sectors in
CP/M documentation and should not be confused with other references to sectors, in which cases
the CP/M 128-byte sectors should be assumed. When the host sector size is larger than 128 bytes,
host sectors must be buffered in memory and the 128-byte CP/M sectors must be blocked and
deblocked from them. This can be done by adding an additional module, the blocking and
deblocking algorithm, between the BIOS disk I/O routines and the actual disk I/O.

sectors per track (SPT): A two-byte parameter in the disk parameter block at DPB + 0. The
BDOS makes calls to the BIOS entry point SECTRAN with logical sector numbers ranging
between 0 and (SPT - 1) in register BC.

SECTRAN: Entry point to a routine in the BIOS that performs logical-to-physical sector
translation for the BDOS.

SELDSK: Entry point to a routine in the BIOS that sets the currently selected drive.

SETDMA: Entry point to a routine in the BIOS that sets the currently selected DMA address.
The DMA address is the address of a 128-byte buffer region in memory that is used to transfer
data to and from the disk in subsequent reads and writes.

SETSEC: Entry point to a routine in the BIOS that sets the currently selected sector.

SETTRK: Entry point to a routine in the BIOS that sets the currently selected track.

skew factor: Factor that defines the logical-to-physical sector number translation in XLT.
Logical sector numbers are used by the BDOS and range between 0 and (SPT - 1). Data is
written in consecutive logical 128-byte sectors grouped in data blocks. The number of sectors

Appendix H : Glossary CP/M Operating System Manual

H-16

per block is given by BLS/128. Physical sectors on the disk media are also numbered
consecutively. If the physical sector size is also 128 bytes, a one-to-one relationship exists
between logical and physical sectors. The logical-to-physical translation table (XLT) maps this
relationship, and a skew factor is typically used in generating the table entries. For instance, if the
skew factor is 6, XLT will be:

 Logical: 0 1 2 3 4 5 6 25
 Physical: 1 7 13 19 25 5 11 22

The skew factor allows time for program processing without missing the next sector. Otherwise,
the system must wait for an entire disk revolution before reading the next logical sector. The
skew factor can be varied, depending on hardware speed and application processing overhead.
Note that no sector translation is done when the physical sectors are larger than 128 bytes, as
sector deblocking is done in this case. See also sector, SKF, and XLT.

SKF: A diskdef macro library parameter specifying the skew factor to be used in building XLT.
If SKF is zero, no translation table is generated and the XLT byte in the DPH will be 0000H.

software: Programs that contain machine-readable instructions, as opposed to hard-ware, which
is the actual physical components of a computer.

source file: ASCII text file usually created with an editor that is an input file to a system
program, such as a language translator or text formatter.

SP: Stack pointer. See stack.

spooling: Process of accumulating printer output in a file while the printer is busy. The file is
printed when the printer becomes free; a program does not have to wait for the slow printing
process.

SPT: See sectors per track.

stack: Reserved area of memory where the processor saves the return address when a call
instruction is received. When a return instruction is encountered, the processor restores the
current address on the stack to the program counter. Data such as the contents of the registers can
also be saved on the stack. The push instruction places data on the stack and the pop instruction
removes it. An item is pushed onto the stack by decrementing the stack pointer (SP) by 2 and
writing the item at the SP address. In other words, the stack grows downward in memory.

syntax: Format for entering a given command.

SYS: See system attribute.

Appendix H : Glossary CP/M Operating System Manual

H-17

SYSGEN image: Memory image of the CP/M system created by SYSGEN when a destination
drive is not specified. This is the same as the MOVCPM image that can be read by SYSGEN if a
source drive is not specified. See MOVCPM image.

system attribute (SYS): File attribute. You can give a file the system attribute by using the SYS
option in the STAT command or by using the set file attributes function, BDOS Function 12. A
file with the SYS attribute is not displayed in response to a DIR command. If you give a file with
user number 0 the SYS attribute, you can read and execute that file from any user number on the
same drive. Use this feature to make your commonly used programs available under any user
number.

system prompt: Symbol displayed by the operating system indicating that the system is ready to
receive input. See prompt and CP/M prompt.

system tracks: Tracks reserved on the disk for the CP/M system. The number of system tracks
is specified by the parameter OFF in the disk parameter block (DPB). The system tracks for a
drive always precede its data tracks. The command SYSGEN copies the CP/M system from the
system tracks to memory, and vice versa. The standard SYSGEN utility copies 26 sectors from
track 0 and 26 sectors from track 1. When the system tracks contain additional sectors or tracks
to be copied, a customized SYSGEN must be used.

terminal: See console.

TPA: Transient Program Area. Area in memory where user programs run and store data. This
area is a region of memory beginning at 0100H and extending to the base of the CP/M system in
high memory. The first module of the CP/M system is the CCP, which can be overwritten by a
user program. If so, the TPA is extended to the base of the CP/M BDOS module. If the CCP is
overwritten, the user program must terminate with either a system reset (Function 0) call or a
jump to location zero in page zero. The address of the base of the CP/M BDOS is stored in
location 0006H in page zero least significant byte first.

track: Data on the disk media is accessed by combination of track and sector numbers. Tracks
form concentric rings on the disk; the standard IBM single-density disks have 77 tracks. Each
track consists of a fixed number of numbered sectors. Tracks are numbered from zero to one less
than the number of tracks on the disk.

Transient Program Area: See TPA.

upward compatible: Term meaning that a program created for the previously released operating
system, or compiler, runs under the newly released version of the same operating system.

USER: Term used in CP/M and MP/M systems to distinguish distinct regions of the directory.

Appendix H : Glossary CP/M Operating System Manual

H-18

user number: Number assigned to files in the disk directory so that different users need only
deal with their own files and have their own directories, even though they are all working from
the same disk. In CP/M, files can be divided into 16 user groups.

utility: Tool. Program that enables the user to perform certain operations, such as copying files,
erasing files, and editing files. The utilities are created for the convenience of programmers and
users.

vector: Location in memory. An entry point into the operating system used for making system
calls or interrupt handling.

warm start: Program termination by a jump to the warm start vector at location 0000H, a system
reset (BDOS Function 0), or a CTRL-C typed at the keyboard. A warm start reinitializes the disk
subsystem and returns control to the CP/M operating system at the CCP level. The warm start
vector is simply a jump to the WBOOT entry point in the BIOS.

WBOOT: Entry point to a routine in the BIOS used when a warm start occurs. A warm start is
performed when a user program branches to location 0000H, when the CPU is reset from the
front panel, or when the user types CTRL-C. The CCP and BDOS are reloaded from the system
tracks of drive A.

wildcard characters: Special characters that match certain specified items. In CP/M there are
two wildcard characters: ? and *. The ? can be substituted for any single character in a filename,
and the * can be substituted for the primary filename, the filetype, or both. By placing wildcard
characters in filenames, the user creates an ambiguous filename and can quickly reference one or
more files.

word: 16-bit or two-byte value, such as an address value. Although the Intel 8080 is an 8-bit
CPU, addresses occupy two bytes and are called word values.

WRITE: Entry point to a routine in the BIOS that writes the record at the currently selected
DMA address to the currently selected drive, track, and sector.

XLT: Logical-to-physical sector translation table located in the BIOS. SECTRAN uses XLT to
perform logical-to-physical sector number translation. XLT also refers to the two-byte address in
the disk parameter header at DPBASE + 0. If this parameter is zero, no sector translation takes
place. Otherwise this parameter is the address of the translation table.

ZERO PAGE: See page zero.

End of Appendix H

Appendix H : Glossary CP/M Operating System Manual

H-19

Appendix I
CP/M Error Messages

Messages come from several different sources. CP/M displays error messages when there are
errors in calls to the Basic Disk Operating System (BDOS). CP/M also displays messages when
there are errors in command lines. Each utility supplied with CP/M has its own set of messages.
The following lists CP/M messages and utility messages. One might see messages other than
those listed here if one is running an application program. Check the application program's
documentation for explanations of those messages.

Tablel-1. CP/MErrorMessages

Message Meaning

?

DDT. This message has four possible meanings:

- DDT does not understand the assembly language instruction.
- The file cannot be opened.
- A checksum error occurred in a HEX file.
- The assembler/disassembler was overlayed.

ABORTED

PIP. You stopped a PIP operation by pressing a key.

ASM Error Messages

D Data error: data statement element cannot be placed in specified data area.

E Expression error: expression cannot be evaluated during assembly.

L Label error: label cannot appear in this context (might be
duplicate label).

Appendix H : Glossary CP/M Operating System Manual

I-1

Table 1-1. (continued)

Message Meaning

N Not implemented: unimplemented features, such as macros,
are trapped.

0 Overflow: expression is too complex to evaluate.

P Phase error: label value changes on two passes through
assembly.

R Register error: the value specified as a register is incompati-

ble with the code.

S Syntax error: improperly formed expression.

U Undefined label: label used does not exist.

V Value error: improperly formed operand encountered in an
expression.

BAD DELIMITER

STAT. Check command line for typing errors.

Bad Load
CCP error message, or SAVE error message.

Bdos Err On d:
Basic Disk Operating System error on the designated drive: CP/M replaces d: with
the drive specification of the drive where the error occurred. This message is
followed by one of the four phrases in the situations described below.

Appendix I : CP/M Error Messages CP/M Operating System Manual

I-2

Table 1-1. (continued)

Message Meaning

Bdos Err On d: Bad Sector

This message appears when CP/M finds no disk in the drive, when the disk is
improperly formatted, when the drive latch is open, or when power to the drive is
off. Check for one of these situations and try again. This could also indicate a
hardware problem or a worn or improperly formatted disk. Press TC to terminate
the program and return to CP/M, or press RETURN to ignore the error.

Bdos Err On d: File R/O

You tried to erase, rename, or set file attributes on a Read-Only file. The file
should first be set to Read-Write (R[W) with the command: STAT filespec $R/W.

Bdos Err On d: R/O

Drive has been assigned Read-Only status with a STAT command, or the disk in
the drive has been changed without being initialized with a TC. CP/M terminates
the current program as soon as you press any key.

Bdos Err on d: Select

CP/M received a command line specifying a nonexistent drive. CP/M terminates
the current program as soon as you press any key. Press RETURN or CTRL-C to
recover.

Break "x" at c

ED. "x" is one of the symbols described below and c is the command letter being
executed when the error occurred.

Search failure. ED cannot find the string specified in an F, S, or N
command.

? Unrecognized command letter c. ED does not recognize the indicated
command letter, or an E, H, Q, or 0 command is not alone on its command
line.

Appendix I : CP/M Error Messages CP/M Operating System Manual

I-3

Table I-1. (continued)

Message Meaning

- The file specified in an R command cannot be found.

> Buffer full. ED cannot put any more characters in the memory buffer, or the
string specified in an F, N, or S command is too long.

E Command aborted. A keystroke at the console aborted command execution.

F Disk or directory full. This error is followed by either the disk or directory
full message. Refer to the recovery procedures listed under these messages.

CANNOT CLOSE DESTINATION FILE--{filespec}

 PIP. An output file cannot be closed. You should take appropriate
action after checking to see if the correct disk is in the drive and that the disk is
not write-protected.

Cannot close, R/O
CANNOT CLOSE FILES

CP/M cannot write to the file. This usually occurs because the disk is
write-protected.

ASM. An output file cannot be closed. This is a fatal error that terminates ASM
execution. Check to see that the disk is in the drive, and that the disk is not
write-protected.

DDT. The disk file written by a W command cannot be closed. This is a fatal
error that terminates DDT execution. Check if the correct disk is in the drive and
that the disk is not write-protected.

SUBMIT. This error can occur during SUBMIT file processing. Check if the
correct system disk is in the A drive and that the disk is not write-protected. The
SUBMIT job can be restarted after rebooting CP/M.

Appendix I : CP/M Error Messages CP/M Operating System Manual

I-4

Table 1-1. (continued)
Message Meaning

CANNOT READ

PIP. PIP cannot read the specified source. Reader cannot be implemented.

CANNOT WRITE

PIP. The destination specified in the PIP command is illegal. You probably
specified an input device as a destination.

Checksum error

PIP. A HEX record checksum error was encountered. The HEX record that
produced the error must be corrected, probably by recreating the HEX file.

CHECKSUM ERROR
LOAD ADDRESS hhhh
ERROR ADDRESS hhhh
BYTES READ:
h h h h :

LOAD. File contains incorrect data. Regenerate HEX file from the source.

Command Buffer Overflow

SUBMIT. The SUBMIT buffer allows up to 2048 characters in the input file.

Command too long

SUBMIT. A command in the SUBMIT file cannot exceed 125 characters.

\CORRECT ERROR, TYPE RETURN OR CTRL-Z

PIP. A HEX record checksum was encountered during the transfer of a HEX file.
The HEX file with the checksum error should be corrected, probably by recreating
the HEX file.

Appendix I : CP/M Error Messages CP/M Operating System Manual

I-5

Table 1-1. (continued)

Message Meaning

DESTINATION IS R/O, DELETE (Y/N)?

PIP. The destination file specified in a PIP command already exists and it is
Read-Only. If you type Y, the destination file is deleted before the file copy is
done.

Directory full

ED. There is not enough directory space for the file being written to the
destination disk. You can use the OXfilespec command to erase any unnecessary
files on the disk without leaving the editor.

SUBMIT. There is not enough directory space to write the $$$.SUB file used for
processing SUBMITS. Erase some files or select a new disk and retry.

Disk fuI1

ED. There is not enough disk space for the output file. This error can occur on the
W, E, H, or X commands. If it occurs with X command, you can repeat the
command prefixing the filename with a different drive.

DISK READ ERROR--{filespec}

PIP. The input disk file specified in a PIP command cannot be read properly.
This is usually the result of an unexpected end-of-file. Correct the problem in
your file.

Appendix I : CP/M Error Messages CP/M Operating System Manual

I-6

Table 1-1. (continued)

Message Meaning

DISK WRITE ERROR--{filespec}

DDT. A disk write operation cannot be successfully performed during a W
command, probably due to a full disk. You should either erase some unnecessary
files or get another disk with more space.

PIP. A disk write operation cannot be successfully performed during a PIP
command, probably due to a full disk. You should either erase some unnecessary
files or get another disk with more space and execute PIP again.

SUBMIT. The SUBMIT program cannot write the $$$.SUB file to the disk.
Erase some files, or select a new disk and try again.

ERROR: BAD PARAMETER

PIP. You entered an illegal parameter in a PIP command. Retype the entry
correctly.

ERROR: CANNOT OPEN SOURCE, LOAD ADDRESS hhhh

LOAD. Displayed if LOAD cannot find the specified file or if no filename is
specified.

ERROR: CANNOT CLOSE FILE, LOAD ADDRESS hhhh

LOAD. Caused by an error code returned by a BDOS function call. Disk might
be write-protected.

ERROR: CANNOT OPEN SOURCE, LOAD ADDRESS hhhh

LOAD. Cannot find source file. Check disk directory.

ERROR: DISK READ, LOAD ADDRESS hhhh

LOAD. Caused by an error code returned by a BDOS function call.

Appendix I : CP/M Error Messages CP/M Operating System Manual

I-7

Table 1-1. (continued)

Message Meaning

ERROR: DISK WRITE, LOAD ADDRESS hhhh

LOAD. Destination disk is full.

ERROR: INVERTED LOAD ADDRESS, LOAD ADDRESS hhhh

LOAD. The address of a record was too far from the address of the
previously-processed record. This is an internal limitation of LOAD, but it can be
circumvented. Use DDT to read the HEX file into memory, then use a SAVE
command to store the memory image file on disk.

ERROR: NO MORE DIRECTORY SPACE, LOAD ADDRESS hhhh

LOAD. Disk directory is full.

Error on line nnn message

SUBMIT. The SUBMIT program displays its messages in the format shown
above, where nnn represents the line number of the SUBMIT file. Refer to the
message following the line number.

FILE ERROR

ED. Disk or directory is full, and ED cannot write anything more on the disk.
This is a fatal error, so make sure there is enough space on the disk to hold a
second copy of the file before invoking ED.

FILE EXISTS

You have asked CP/M to create or rename a file using a file specification that is
already assigned to another file. Either delete the existing file or use another file
specification.

REN. The new name specified is the name of a file that already exists. You
cannot rename a file with the name of an existing file. If you want to replace an
existing file with a newer version of the same file, either rename or erase the
existing file, or use the PIP utility.

Appendix I : CP/M Error Messages CP/M Operating System Manual

I-8

Table 1-1. (continued)

Message Meaning

File exists, erase it
ED. The destination filename already exists when you are placing the destination
file on a different disk than the source. It should be erased or another disk
selected to receive the output file.

 ** FILE IS READ/ONLY **

ED. The file specified in the command to invoke ED has the ReadOnly attribute.
Ed can read the file so that the user can examine it, but ED cannot change a
Read-Only file.

File Not Found

CP/M cannot find the specified file. Check that you have entered the correct drive
specification or that you have the correct disk in the drive.

ED. ED cannot find the specified file. Check that you have entered the correct
drive specification or that you have the correct disk in the drive.

STAT. STAT cannot find the specified file. The message might appear if you
omit the drive specification. Check to see if the correct disk is in the drive.

FILE NOT FOUND--{filespec}

PIP. An input file that you have specified does not exist.

Filename required
ED. You typed the ED command without a filename. Reenter the ED command
followed by the name of the file you want to edit or create.

hhhh??=dd

DDT. The ?? indicates DDT does not know how to represent the hexadecimal
value dd encountered at address hhhh in 8080 assembly language. dd is not an
8080 machine instruction opcode.

Appendix I : CP/M Error Messages CP/M Operating System Manual

I-9

Table 1-1. (continued)

Message Meaning

Insufficient memory

DDT. There is not enough memory to load the file specified in an R or E
command.

Invalid Assignment

STAT. You specified an invalid drive or file assignment, or misspelled a device
name. This error message might be followed by a list of the valid file assignments
that can follow a filename. If an invalid drive assignment was attempted the
message Use: d: = RO is displayed, showing the proper syntax for drive
assignments.

Invalid control character

SUBMIT. The only valid control characters in the SUBMIT files of the type SUB
are ^ A through ^ Z. Note that in a SUBMIT file the control character is
represented by typing the circumflex, ', not by pressing the control key.

INVALID DIGIT--{filespec}

PIP. An invalid HEX digit has been encountered while reading a HEX file. The
HEX file with the invalid HEX digit should be corrected, probably by recreating
the HEX file.

Invalid Disk Assignment

STAT. Might appear if you follow the drive specification with anything except =
R/O.

INV)ALID DISK SELECT

CP/M received a command line specifying a nonexistent drive, or the disk in the
drive is improperly formatted. CP/M terminates the current program as soon as
you press any key.

Appendix I : CP/M Error Messages CP/M Operating System Manual

I-10

Table 1-1. (continued)

Message Meaning

INVALID DRIVE NAME (Use A, B, C, or D)

SYSGEN. SYSGEN recognizes only drives A, 5, C, and D as valid destinations
for system generation.

Invalid File Indicator

STAT. Appears if you do not specify RO, RW, DIR, or SYS.

INVALID FORMAT

PIP. The format of your PIP command is illegal. See the description of the PIP
command.

INVALID HEX DIGIT
LOAD ADDRESS hhhh
ERROR ADDRESS hhhh
BYTES READ:
h h h h

LOAD. File contains incorrect HEX digit.

INVALID MEMORY SIZE

MOVCPM. Specify a value less than 64K or your computer's actual memory size.

INVALID SEPARATOR

PIP. You have placed an invalid character for a separator between two input
filenames.

INVALID USER NUMBER

PIP. You have specified a user number greater than 15. User numbers are in the
range 0 to 15.

Appendix I : CP/M Error Messages CP/M Operating System Manual

I-11

Table 1-1. (continued)

Message Meaning

n ? USER. You specified a number greater than fifteen for a user area number. For
example, if you type USER 18<cr>, the screen displays 18?.

NO DIRECTORY SPACE

ASM. The disk directory is full. Erase some files to make room for PRN and
HEX files. The directory can usually hold only 64 filenames.

NO DIRECTORY SPACE--{filespec}

PIP. There is not enough directory space for the output file. You should either
erase some unnecessary files or get another disk with more directory space and
execute PIP again.

NO FILE--{filespec}

DIR, ERA, REN, PIP. CP/M cannot find the specified file, or no files exist.

ASM. The indicated source or include file cannot be found on the indicated drive.

DDT. The file specified in an R or E command cannot be found on the disk.

NO INPUT FILE PRESENT ON DISK

DUMP. The file you requested does not exist.

No memory

There is not enough (buffer?) memory available for loading the program specified.

Appendix I : CP/M Error Messages CP/M Operating System Manual

I-12

Table 1-1. (continued)

Message Meaning

NO SOURCE FILE ON DISK

SYSGEN. SYSGEN cannot find CP/M either in C P / M x x . C 0 M form or on
the system tracks of the source disk.

NO SOURCE FILE PRESENT

ASM. The assembler cannot find the file you specified. Either you mistyped the
file specification in your command line, or the filetype is not ASM.

NO SPACE
SAVE. Too many files are already on the disk, or no room is left on the disk to
save the information.

No SUB file Present

SUBMIT. For SUBMIT to operate properly, you must create a file with filetype
of SUB. The SUB file contains usual CP/M commands. Use one command per
line.

NOT A CHARACTER SOURCE

PIP. The source specified in your PIP command is illegal. You have probably
specified an output device as a source.

** NOT DELETED **

PIP. PIP did not delete the file, which might have had the R/O attribute.

NOT FOUND

PIP. PIP cannot find the specified file.

Appendix I : CP/M Error Messages CP/M Operating System Manual

I-13

Table I-1. (continued)

Message Meaning

OUTPUT FILE WRITE ERROR

ASM. You specified a write-protected disk as the destination for the PRN and
HEX files, or the disk has no space left. Correct the problem before assembling
your program.

Pa rameter error

SUBMIT. Within the SUBMIT file of type sub, valid parameters are $0 through
$9.

PARAMETER ERROR, TYPE RETURN TO IGNORE

SYSGEN. If you press RETURN, SYSGEN proceeds without processing the
invalid parameter.

QUIT NOT FOUND

PIP. The string argument to a Q parameter was not found in your input file.

Read error

TYPE. An error occurred when reading the file specified in the type command.
Check the disk and try again. The STAT filespec command can diagnose trouble.

READER STOPPING

PIP. Reader operation interrupted.

Record Too Long

PIP. PIP cannot process a record longer than 128 bytes.

Requires CP/M 2.0 or later

XSUB. XSUB requires the facilities of CP/M 2.0 or newer version.

Appendix I : CP/M Error Messages CP/M Operating System Manual

I-14

Table 1-1. (continued)

Message Meaning

Requires CP/M 2.0 or new for operation

PIP. This version of PIP requires the facilities of CP/M 2.0 or newer version.

START NOT FOUND

PIP. The string argument to an S parameter cannot be found in the source file.

SOURCE FILE INCOMPLETE

SYSGEN. SYSGEN cannot use your CP/M source file.

SOURCE FILE NAME ERROR

ASM. When you assemble a file, you cannot use the wildcard characters " and ?
in the filename. Only one file can be assembled at a time.

SOURCE FILE READ ERROR

ASM. The assembler cannot understand the information in the file containing the
assembly-language program. Portions of another file might have been written
over your assembly-language file, or information was not properly saved on the
disk. Use the TYPE command to locate the error. Assembly-language files
contain the letters, symbols, and numbers that appear on your keyboard. If your
screen displays unrecognizable output or behaves strangely, you have found where
computer instructions have crept into your file.

SYNCHRONIZATION ERROR

MOVCPM. The MOVCPM utility is being used with the wrong CP/M system.

"SYSTEM" FILE NOT ACCESSIBLE

You tried to access a file set to SYS with the STAT command.

Appendix I : CP/M Error Messages CP/M Operating System Manual

I-15

Table 1-1. (continued)

Message Meaning

** TOO MANY' FILES **

STAT. There is not enough memory for STAT to sort the files specified, or more
than 512 files were specified.

UNEXPECTED END OF HEX FILE--{filespec}

PIP. An end-of-file was encountered prior to a termination HEX record. The
HEX file without a termination record should be corrected, probably by recreating
the HEX file.

Unrecognized Destination

PIP. Check command line for valid destination.

Use: STAT d:=RO

STAT . An invalid STAT drive command was given. The only valid drive
assignment in STAT is STAT d: = RO.

VERIFY ERROR:--{filespec}

PIP. When copying with the V option, PIP found a difference when rereading the
data just written and comparing it to the data in its memory buffer. Usually this
indicates a failure of either the destination disk or drive.

WRONG CP/M VERSION (REQUIRES 2.0)

XSUB ACTIVE

SUBMIT. XSUB has been invoked.

XSUB ALREADY PRESENT

SUBMIT. XSUB is already active in memory.

Appendix I : CP/M Error Messages CP/M Operating System Manual

I-16

Table 1-1. (continued)

Message Meaning

Your Input?

If CP/M cannot find the command you specified, it returns the command name
you entered followed by a question mark. Check that you have typed the
command line correctly, or that the command you requested exists as a COM file
on the default or specified disk.

End of Appendix I

Appendix I : CP/M Error Messages CP/M Operating System Manual

I-17

A C

Absolute line number, 2-5 Case translation, 1-6, 1-7, 1-31, 1-32 1-33,
2-7, 2-10, 2-20, Access mode, 1-19 2-21, 2-22, 3-7, 5-10, 5-11
afn (ambiguous file reference), 1-4, 1-7 CCP (Console Command Processor),
Allocation vector, 5-27 1-2, 4-1, 5-1, 6-1
Ambiguous file reference (afn), 1-4, 1-7 CCP Stack, 5-6
ASM, 1-22, 3-1 Character pointer, 2-4
Assembler, 1-22, 3-1 cks parameter, 6-35
Assembler/disassembler module Close File function, 5-20

(DDT), 4-1 1 Code and data areas, 6-26
Assembler errors, 3-24 Cold start loader, 6-13, 20, 25
Assembly language mnemonics in Command, 1-3

DDT, 4-4, 4-7 Command line, 5-3
Assembly language program, 3-3 Comment field, 3-4
Assembly language statement, 3-3 Compute File Size function, 5-33
Automatic command processing, 1-39 Condition flags, 3-17, 4-11

Conditional assembly, 3-14
CONIN, 6-21

B CONOUT, 6-21
CONSOLE, 6-18

Base, 3-5 Console Command Processor (CCP),
Basic Disk Operating System (BDOS), 1-2, 4-1, 5-1, 6-1

1-2, 5-1, 6-1 Console Input function, 5-12
Basic 1/0 System (BIOS), 1-2,5-1, 6-1 Console Output function, 5-12
BDOS (Basic Disk Operating System), CONST, 6-21

1-2, 5-1, 6-1 Constant, 3-5
Binary constants, 3-5 Control characters, 2-19
BIOS (Basic 1/0 System), 1-2, 5-1, 6-1 Control functions, 1-13
BIOS disk definition, 6-34 CTRL-Z character, 5-7
BIOS subroutines, 6-15 Copy files, 1-25
Block move command, 4-8 CPU state, 4-3, 4-4
bls parameter, 6-35 cr (carriage return), 2-10
BOOT, 5-2, 6-13, 6-20 Create files, 1-35
BOOT entry point, 6-20 Create system disk, 1-37
Break point, 4-4, 4-6 Creating COM files, 1-24
Built-in commands, 1-3 Currently logged disk, 1-3, 1-7, 1-15, 1-36

Appendix I : CP/M Error Messages CP/M Operating System Manual

Index-1

D Drive characteristics, 1-21
Drive select code, 5-9

Data allocation size, 6-31 Drive specification, 1-7
Data block number, 6-32 DS statement, 3-16
DB statement, 3-15 DUMP, 1-41 5-40
DDT commands, 4-4, 6-9 DW statement, 3-15
DDT nucleus, 4-11
DDT prompt, 4-2
DDT sign-on message, 4-1 E
Decimal constant, 3-5
Default FCB, 4-7 ED, 1-35, 2-1-2-22, 6-6
Delete File function, 5-22 ED commands, 2-8,19
DESPOOL, 6-17 ED errors, 2-18
Device assignment, 1-16 Edit command line, 1-1 2
DIR, 1-9 8080 CPU registers, 4-10
DIR attribute, 1-20 8080 registers, 3-6
dir parameter, 6-35 end-of-file, 1-28, 5-7
Direct console 1/0 function, 5-14 END statement, 3-4, 3-11
Direct Memory Address, 5-27 EMDEF macro, 6-35
Directory, 1-9 ENDIF statement, 3-13
Directory code, 5-19, 5-20, 5-21, 5-22, EQU statement, 3-12

5-23, 5-24, 5-25 ERA, 1-8
Disassembler, 4-4, 1 1 Erase files, 1-8
Disk attributes, 1-15 Error messages, 1-44, 2-18, 3-24
Disk drive name, 1-6, 7 Expression, 3-4
Disk 1/0 functions, 5-17-5-35 Extents, 1-19
Disk parameter block, 6-30
Disk parameter header, 6-28
Disk parameter table, 6-28 F
Disk statistics, 1-15
Disk-to-disk copy, 1-27 FBASE, 5-2
DISKDEF macro, 6-34 FCB, 5-8,5-9
Diskette format, 1-47 FCB format, 5-8, 5-9
DISKS macro, 6-34 FDOS (operations), 5-1, 5-4
Display file contents, 1 -1 1 File attributes, I - 20
dks parameter, 6-35 File compatibility, 1-35
DMA, 5-27 File control block (FCB), 5-8, 5-9
DMA address, 5-8 File expansion, 6-2
dn parameter, 6-35 File extent, 5-8
DPBASE, 6-29 File indicators, 1-20

File names, 1-4

Index CP/M Operating System Manual

Index-2

File reference, 1-4 K
File statistics, 1-15, 1-19
Filetvpe, 5-6 Key fields, 5-34
Find command, 2-11
fsc parameter, 6-35

G Label field, 3-3
Labels, 3-3, 3-4, 3-16

Get ADDR (Alloc) function, 5-27 Library read command, 2-16
Get ADDR (Disk Parms) function, 5-29 Line-edit'ng control characters, 2-9, 4-2,
5-16
Get Console Status, 5- 17 Line-editing functions, I- 12
Get 1/0 Byte function, 5-15 Line numbers, 2-5
Get Read/Oiily Vector function, 5-28 LIST, 6-17, 6-21
GETSYS, 6-3, 6-11 List Output function, 5-14

LISTST, 6-24
LOAD, 1-24

H Logged in,1-3
Logical devices, 1-16, 1-28, 6-17

Hexadecimal constaiit, 3-5 Logical extents, 5-8
HOME subroutine, 6-20, 22 Logical-phvsical assignments, 1-18, 6-19

Logical to physical device mapping, 6-18
I

Logical to physical sector translation 6-24,
6-35
Identifier, 3-3, 3-5
IF statement, 3-13 Isc parameter, 6-35
Initialized storage areas, 3-15
In-line assembly language, 4-4
Insert mode, 2-7 M
Insert String, 2-12
IOBYTE function, 6-17-6-19 Macro command, 2-17

Make File function, 5-25
Memory buffer, 2-1-2-7

J Memory image, 4-3, 6-6, 6-7
Memory size, 1-42, 6-3, 6-8

jump vector, 6-15 MOVCPM, 1-42,6-7
juxtaposition command, 2-15

Index CP/M Operating System Manual

Index-3

N

Negative bias, 6-7 Radix indicators, 3-5
Random access, 5-31, 5-32, 5-46
Random record number, 5-32

O READ, 6-23
Read Console Buffer function, 5-16

[o] parameter, 6-35 Read only, 1-20
Octal constant, 3-5 Read/only status, 1-20
ofs parameter, 6-35 Read random error codes, 5-31
On-line status, 5-19 Read Random function, 5-30
Open File function, 5-19 READ routine, 6-20
Operand field, 3-4, 3-6 Read Sequential function, 5-23
Operation field, 3-4, 3-16 Read/write, 1-20
Operators, 3-9, 3-16 READER, 6-18,21
ORG directive, 3-11 Reader Input function, 5-13

REN, 1-10
Rename file function, 5-25

P Reset Disk function, 5-18
Reset Drive function, 5-35

Page zero, 6-26 Reset state, 5-18
Patching the CP/M system, 6-3 Return Current Disk function, 5-26
Peripheral devices, 6-17 Return Log-in Vector function, 5-26
Physical devices, 1-17, 6-17 Return Version Number function, 5-18
Physical file size, 5-33 R/0, 1-20
Physical to logical device assignment, R/O attribute, 5-29

1-18, 6-19 R/O bit, 5-28
PIP devices, 1-28 R/W, 1-20
PIP parameters, 1-31
Print String function, 5-15
PRN file, 3-1 S
Program counter,4-4,4-6, 4-7, 4-11
Program tracing, 4-9 SAVE, 1-11
Prompt, 1-3 SAVE command, 4-3
Pseudo-operation, 3-10 Search for First function, 5-21
PUNCH, 6-17, 6-21 Search for Next function, 5-22
Punch Output function, 5-13 Search strings, 2-11
PUTSYS, 6-4, 6-11 Sector allocation, 6-13

Index CP/M Operating System Manual

Index-4

SECTRAN, 6-2 Translate table, 6-37
SELDSK, 6-19, 6-22, 6-30 Translation vectors, 6-30
Select Disk function, 5-19 TYPE, 1-11
Sequential access, 5-8
Set DMA address function, 5-27
Set File Attributes function, 5-29 U
Set/Get User Code function, 5-30
Set 1/0 Bvte function, 5-15 ufn, 1-4, 1-7
Set Random Record function, 5-34 Unambiguous file reference, 1-4, 1-7
SET statement, 3-13 Uninitialized memory, 3-16
SETDMA, 6-23 Untrace mode, 4-10
SETSEC, 6-23 USER, 1-12
SETTRK, 6-22 USER numbers, 1-12, 1-22, 5-30
Simple character 1/0, 6-17
Size in records, 1-19
skf parameter, 6-35, 6-37 V
Source files, 5-7
Stack pointer, 5-6 Verify line numbers command, 2-6, 21
STAT, 1-15, 6-17,6-38 Version independent programming, 5-18
Stop console output, 1-13 Virtual file size, 5-33
String substitutions, 2-14
SUBMIT, 1-39
SYS attribute, 1-20
SYSGEN, 1-37, 6-10 W
System attribute, 2-19, 5-29
Svstem parameters, 6-20 Warm start, 5-2, 6-20
System (re)lnltlallzation, 6-16 WBOOT entry point, 6-20
System Reset function, 5-11 Write routine, 6-24

Write Sequential function, 5-24
T WRITE, 6-24

Write Protect Disk function, 5-28
Testing and debugging of programs, 41 Write random error codes, 5-32
Text transfer commands, 2-3 Write Random function, 5-32
TPA (Transient Program Area), 1-2, 51 Write Random with Zero Fill function, 5-35
Trace mode, 4-1 0
Transient commands, 1-3, 1-14 X
Transient Program Area (TPA), 1-2, 5-1

XSUB, 1-41

Index CP/M Operating System Manual

Index-5

1

 LINK-80 OPERATOR'S GUIDE

 Copyright (c) 1980

 Digital Research
P.O. Box 579

 801 Lighthouse Avenue
 Pacific Grove, CA 93950

 (408) 649-3896
 TWX 910 360 5001

 All Rights Reserved

2

COPYRIGHT

Copyright (c) 1980 by Digital Research. All rights reserved. No pa r t of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in any form or by
anv means, electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of Digital Research, Post Office
Box 579, Pacific r1rove, California, 93950.

This manual is, however, tutorial in nature. Thus, permission is granted to
reproduce or abstract the example programs shown in the enclosed figures for the
purposes of inclusion within the reader's programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties of
merchantabilitv or fitness for any particular purpose. Further, Digital Research
reserves the right to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital Research to notify any
Person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research. PL/I-80, MP/M-80, RMAC, SID,
ZSID and TEX are trademarks of Digital Research.

The "LINK-80 Operator's Guide" was Prepared using the Digital Research TFX Text
formatter.

Second Printing: December, 1980

3

TABLE OF CONTENTS

LINK LINKAGE EDITOR 1
1.1. LINK Operation 1
1.2. LINK Switches 2

1.2.1. The Additional memory (A) Switch . 2
1.2.2. The Data Origin (D) Switch 2
1.2.3. The Go (G) Switch 2
1.2.4. The Load Address (L) Switch 2
1.2.5. The Memory Size (M) Switch 3
1.2.6. The No List (NL) Switch 3
1.2.7. The No Recording of Symbols (Nil) Switch 3
1.2.8. The Output COM File (OC) Switch 3
1.2.9. The Output PRL File (OP.) Switch 3
1.2.10. The Program Origin (P) Switch 3
1.2.11. The '?' Symbol (Q) Switch 4
1.2.12. The Search (S) Switch 4

1.3. Creating MP/M PRL Files 4
1.4. Sample Link 5
1.5. Error Messages 9
1.6. Format of REL Files 10
1.7. Format of IRL Files 13

2. RMAC RELOCATING MACRO ASSEMBLER 13
2.1. RMAC Operation 13
2.2. Expressions 13
2.3. Assembler Directives 14

2.3.1. The ASEG Directive 15
2.3.2. The CSEG Directive 15
2.3.3. The DSEG Directive 15
2.3.4o The COMMON Directive 15
2.3.5. The PUBLIC Directive 15
2.3.6. The EXTRN Directive 16
2.3.7. The NAME Directive 16

3. LIB PROGRAM LIBRARIAN 17
3ol. LIB Operation 17
3.2. Error Messages 18

4. DATA REPRESENTATION AND INTERFACE CONVENTIONS 19
4.1. Representation of Data Elements 19

4.1.1. Pointers, and Entry and
Label Variables 19

4.1.2. Fixed Binary Data Format 19
4.1.3. Bit Data Representation 20
4.1.4. Character Data Representation 20
4.1.5. Fixed Decimal Data Representation 21
4.1.6. Floating Point Binary Representation 21
4.1.7. File Constant Representation 22

4.2. Layout of Aggregate Storage 22
4.3. General Parameter Passing Conventions 23
4.4. Returning Values from Functions 24

4.4.1. Returning Pointer, Entry,
and Label Variables 28

4.4.2. Returning Fixed Binary Data 28

4

4.4.3. Returning Bit String Data 28
4.4.4. Returning Character Data 28
4.4.5. Returning Fixed Decimal Data 29
4.4.6. Returning Floating Point Numbers 29

5. PL/I-80 RUNTIME SUBROUTINES 33
5.1. Stack and Dynamic Storage Subroutines 33

5.1.1. The TOTWDS and MAXWDS Functions 33
5.1.2. The ALLWDS Subroutine 34
5.1.3. The STKSTZ Function 34

5.2. PL/I-80 Runtime Subroutine Entry Points 39
5.3. Direct CP/M Function Calls 43

APPENDIXES

A: Listing of "PLIDIO" Direct CP/M Call Entry Points 46

B: Listing of "DTOCALLS" Showing the Basic
CP/M Direct Interface 59

C: Listing of "DIOCOPY11 Showing Direct CP/M
File 1/0 Operations 67

D: Listing of "DIORAND" Showing Extended
Random Access Calls 73

E: Description of Overlays and Pile Location
Controls 78

F: Description of XREP Cross-Reference Utility 90

1

I . LINK LINKAGE EDITOR.

LINK is a utility used to combine relocatable object modules into an
absolute file ready for execution under CP/M or MP/M. The relocatable object
modules may be of two types. The first has a filetype of REL, and is produced by
PL/I-80, RMAC, or any other language translator that produces relocatable object
modules in the Microsoft format. The second has a filetype of IRL, and is
generated by the CP/M librarian LIB. An IRL file contains the same information as
a REL file, but includes an index which allows faster linking of large libraries.

Upon completion, LINK lists the symbol table, any unresolved symbols, a
memory map qnd the use factor at the console. The memory map shows the size and
locations of the different segments, and the use factor indicates the amount of
available memory used by LINK as a hexadecimal percentage. LINK writes the symbol
table to a SYM file suitable for use with the CP/M Symbolic Instruction Debugger
(SID), and creates a COM or PRL file for direct execution under CP/M or MP/M.

1.1. LINK Operation

LINK is invoked by typing

LINK filenamel{,filename2,...,filenameN}

where filenamel,...,filenameN are the names of the object modules to be linked.
If no filetype is specified, REL is assumed. LINK will produce two files:
filenamel.COM and filenamel.SYM. If some other filename is desired for the COM
and SYM files, it may be specified in the command line as follows:

LINK newfilenaine=filenamel{,filename2,...,filenameN}

When linking PL/I programs, LINK will automatically search the r un- t im e
library file PLILIB.IRL on the default disk and include any subroutines used by
the PL/I programs.

A number of optional switches, provided for additional control of the link
operation, are described in the following section.

During the link process, LINK may create up to eight temporary files on the
default disk. The files are named:

XXABS.$$$ XXPROG.$$$ XXDATA.$$$ XXCOMM.$$$
YYABS.$$$ YYPROG.$$$ YYDATA.$$$ YYCOMM.$$$

These files are deleted if LINK terminates normally, but may remain on the disk
if LINK aborts due to an error condition.

2

1.2. LINK Switches

LINK switches are used to control the execution parameters of LINK. They
are enclosed in square brackets immediately following one or more of the
filenames in the command line, and are separated by commas.

Example:

LINK TEST[L40001,IOMOD,TESTLIB[S,NL,GSTARTI

All switches except the S switch may appear after any filename in the
command line. The S switch must follow the filename to which it refers.

1.2.1. The Additional Memory (A) Switch. The A switch is used to provide
LINK with additional space for symbol table storage by decreasing the size of
LINK's internal buffers. This switch should be used only when necessary, as
indicated by a MEMORY OVERFLOW error, since using it causes the internal buffers
to be stored on the disk, thus slowing down the linking process considerably.

1.2.2. The Data origin (D) Switch. The D switch is used to specify the
origin of the data and common segments. If not used, LINK will put the data and
common segments immediately after the program segment. The form of the D switch
is Dnnnn, where nnnn is the desired data origin in hex.

1.2.3. The Go (G) Switch. The G switch is used to specify the label where
program execution is to begin, if it does not begin with t'he first byte of the
program segment. LINK will put a jump to the label at the load address. The form
of the G switch is G<label>.

1.2.4. The Load Address (L) Switch. The load address defines the base
address of the COM file generated by LINK. Normally, the load address is 100H,
which is the base of the Transient Program Area in a standard CP/M system. The
form of the L switch is Lnnnn, where nnnn is the desired load address in hex. The
L switch also sets the program origin to nnnn, unless otherwise defined by the P
switch.

3

Note that COM files created with a load address other than 100H will not execute
properly under a standard CP/M system.

1.2.5. The Memory Size (M) Switch. The M switch may be used when creating
PRL files for execution under MP/M to indicate that additional data space is
required by the PRE, program for proper execution. The form of the M switch is
Mnnnn, where nnnn is the amount of additional data space needed in hex.

1.2.6. The No List (NL) Switch. The NL switch is used to suppress the
listing of the symbol table at the console.

1.2.7. The No Recording of Symbols (NR) Switch. The NR switch is used to
suppress the recording of the symbol table file.

1.2.8. The Output COM File (OC) Switch. The OC switch directs LINK to
produce a COM file. This is the default condition for LINK.

1.2.9. The Output PRL File (OP) Switch. The OP switch directs LINK to
produce a page relocatable PRL file for execution under MP/M, rather than a COM
file. See section 1.3 for more information on creating PRL files.

1.2.10. The Program Origin (P) Switch. The P switch is used to specify the
origin of the program segment. If not used, LINK will put the program segment at
the load address, which is 100H unless otherwise specified by the L switch. The
form of the P switch is Pnnnn, where nnnn is the desired program origin in hex.

4

1.2.11. The '?' Symbol (Q) Switch. Symbols in the PL/I run-time library
begin with a question mark to avoid conflict with user symbols. Normally LINK
suppresses listing and recording of these symbols. The Q switch causes these
symbols to be included in the symbol table listed at the console and recorded on
the disk.

1.2.12. The Search (S) Switch. The S switch is used to indicate that the
preceding file should be treated as a library. LINK will search the file and
include only those modules containing symbols which are referenced but not
defined in the modules already linked.

1.3. Creating MP/M PRL Files

Assembly language programs often contain references to symbols in the base
page such as BOOT, BDOS, DFCB, and DBUFF. To run properly under CP/M (or as a COM
file under MP/M) these symbols are simply defined in equates as follows:

BOOT EQU 0 ;JUMP TO WARM BOOT
BDOS EQU 5 ;JUMP TO BDOS ENTRY POINT
DFCB EQU 5CH ;DEFAULT FILE CONTROL BLOCK
DBUFF EQU 80H ;DEFAULT 1/0 BUFFER

With PRL files, however, the base page itself may be relocated at load time, so
LINK must know that these symbols, while at fixed location s within the base
page, are relocatable. To do this, simply declare these symbols as externals in
the modules in which they are referenced:

EXTRN BOOT, BDOS, DFCB, DBUFF

and link in another module in which they are declared as publics and defined in
equates:

PUBLIC BOOT, BDOS, DFCB, DBUFF
BOOT EQU 0 ;JUMP TO WARM BOOT
BDOS EQU 5 ;JUMP TO BDOS ENTRY POINT
DFCB EQU 5CH ;DEFAULT FILE CONTROL BLOCK
DBUFF EQU 80H ;DEFAULT 1/0 BUFFER

END

5

1.4. Sample Link

A sample link is shown on the following pages. First the sample program
GRADE.PLI is compiled, and then a COM file is created by LINK. LINK automatically
searches the PL/I run-time library PLILIB.IRL for the subroutines used by GRADE.
The Q switch causes the symbols taken from PLILIB.IRL to be included in the
symbol table listing (and the SYM file). The memory map following the symbol
table indicates the length and location assigned to each of the segments. A use
factor of 49 indicates that 49H%, or a little more than a quarter of the memory
available to LINK was used.

6

PL/I-80 V1.0, COMPILATION OF: GRADE

D: Disk Print
L: List Source Program

NO ERROR(S) IN PASS 1
NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: GRADE

1 a 0000 average:
2 a 0006 proc options (main);
3 a 0006 /* grade averaging program
4 a 0006
5 c 0006 dcl
6 c 000D sysin file,
7 c 000D (grade,total,n) fixed;
8 c 000D
9 c 000D on error (1)

10 c 0014 /* conversion
11 d 0014 begin;
12 e 0017 put skip list('Bad Value, Try Aqain.');
13 e 0033 get skip;
14 e 0044 go to retry;
15 d 0047 end;
16 d 0047
17 c 0047 on endfile (sysin)
18 d 004F begin;
19 e 0052 if n -= 0 then
20 e 005B put skip list
21 e 008A (Averaqe is',total/n);
22 e 008A stop;
23 d 008D end;
24 d 008D
25 c 008D put skip list
26 c 00A9 ('Type a List of Grades, End with Ctl-Z');
27 c 00A9 total = 0;
28 c 00AF n = 0;
29 c 00B9
30 c 0OB9 retry:
31 c 0069 put skip;
32 c 00CA do while('l'b);
33 c 00CA get list (grade);
34 c 00E2 total = total + grade;
35 c 00ED n = n +
36 c 00F7 end;
37 a 00F7 end average;

CODE SIZE = 00F7
DATA AREA = 004C

7

B>link grade[q)
LINK VO.4

AVERAG 0100 /SYSIN/ 1B77 ?START 1A08 ?ONCOP 18AE
?SYSPR 02C5 ?SKPOP 0430 ?SLCTS 1367 ?PNCOP 01FD
?QIOOP 1987 ?SYSIN 02C1 ?ID22N 13B3 ?QICOP 127E
?PNVOP 0221 ?STOPX 1B19 ?RECOV 1468 ?GNVOP 07D5
?QCIOP 11FB /?FILAT/ 1B9C /?FPB/ 1BA5 ?PNBOP 01F7
?PNCPR 04CF ?IS22N 13F9 ?SIOOP 02CA ?SIOPR 02E8
/?FPBST/ 1BD3 /SYSPRI/ 1BE6 ?OIOOP 05A7 ?FPBIO 0758
?OIOPR 05C6 ?BSL16 131C ?SIGNA 1626 ?SKPPR 0439
?GNCPR 094F ?WRBYT OE36 ?PAGOP 07C7 ?NSTOP 1322
?SMVCM 1390 ?SJSVM 132D ?SSCFS 137A ?QB081 11E7
?OPNFI 0013 /?FMTS/ 1COE ?FPBOU 19DB ?FPBIN 1993
?GNVPR 0812 ?RDBYT OE23 ?RDBUF OE5C ?WRBUF OE7F
?CLOSE OF68 ?GETKY OF99 ?SETKY OFBF ?PATH OF4C
?BDOS 0005 ?DFCBO 005C ?DFCB1 006C ?DBUFF 0080
?ALLOP 14D2 ?FREOP 1568 ?ADDIO 1A64 ?SUBIO 1A7B
?WRCHR 19F1 ?RFSIZ 1OC4 ?RRFCB 1136 ?RWFCB 113B
?QB161 11EA ?IN20 13F1 ?CNVER 1400 ?BSL08 1316
?SJSCM 132F ?SJSTS 1341 ?SLVTS 1365 ?SMCCM 1394
?ID22 13CB ?IN20N 13F1 ?ZEROD 1420 ?IS22 13F9
/?CONSP/ 1C16 ?OFCOP 14B2 ?RSBLK 1437 ?RECLS 1E79
?ERMSG 1B34 ?BEGIN 1E77 /?ONCOD/ 1C37 ?SIGOP 1616
?STACK 1E71 ?ONCPC 194B ?REVOP 1903 /?CNCOL/ 1C3A
?BOOT 0000 ?CMEM 1B77 ?DMEM 1E7B

ABSOLUTE 0000
CODE SIZE 1A77 (0100-lB76)
DATA SIZE 023F (lC3C-lE7A)
COMMON SIZE 0OC5 (lB77-lC3B)
USE FACTOR 49

8

A>b:qrade

Type a List of Grades, End with Ctl-Z
50, 75, 25
^Z

Average is 50
End of Execution

A>b:grade

Type a List of Grades, End with Ctl-Z
50
75
zot,66

Bad Value, Try Again.
25
^Z

Average is 50
End of Execution

A>b:grade

Type a List of Grades, End with Ctl-Z
^Z

End of Execution

9

1.5. Error Messages

CANNOT CLOSE: An output file cannot be closed. The diskette may be write protected.

COMMON ERROR: An undefined common block has been selected.

DIRECTORY FULL: There is no directory space for the output files or intermediate files.

DISK READ ERROR: A file cannot be read properly.

DISK WRITE ERROR: A file cannot be written properly, probably due to a full diskette.

FILE NAME ERROR: The form of a source file name is invalid.

FIRST COMMON NOT LARGEST: A subsequent COMMON declaration is larger than the first COMMON
declaration for the indicated block. Check that the files being linked are in the proper order, or that the modules
in a library are in the proper order.

INDEX ERROR: The index of an IRL file contains invalid information.

INSUFFICIENT MEMORY: There is not enough memory for LINK to allocate its buffers. Try using the A switch.

INVALID REL FILE: The file indicated contains an invalid bit pattern. Make sure that a REL or IRL file has been
specified.

INVALID SYNTAX: The command line used to invoke LINK was not properly formed.

MAIN MODULE ERROR: A second main module was encountered.

MEMORY OVERFLOW: There is not enough memory to complete the link operation. Try using the A switch.

MULTIPLE DEFINITION: The specified symbol is defined in more than one of the modules being linked.

NO FILE: The indicated file cannot be found.

OVERLAPPING SEGMENTS: LINK attempted to write a segment into memory already used by another segment.
Probably caused by incorrect use of P and/or D switches.

UNDEFINED START SYMBOL: The symbol specified with the G switch is not defined in any of the modules being
linked.

UNDEFINED SYMBOLS: The symbols following this message are referenced but not defined in any of the modules
being linked.

UNRECOGNIZED ITEM: An unfamiliar bit pattern has been scanned (and ignored) by LINK.

10

1.6. Format of REL Files

The information in a REL file is encoded in a bit stream, which is interpreted as follows:

1) If the first bit is a 0, then the next 8 bits are loaded according to the value of the location counter.

2) If the first bit is a 1, then the next 2 bits are interpreted as follows:

00 - special link item (see 3)

01 - program relative. The next 16 bits are loaded after being offset by the program segment origin.

10 - data relative. The next 16 bits are loaded after being offset by the data segment origin.

11 - common relative. The next 16 bits are loaded after being offset by the origin of the currently selected
common block.

3) A special item consists of:

- A 4 bit control field which selects one of 16 special link items described below.

- An optional value field which consists of a 2 bit address type field and a 16 bit address field. The address
type field is interpreted as follows:

00 - absolute
01 - program relative
10 - data relative
11 - common relative

- An optional name field which consists of a 3 bit name count followed by the name in 8 bit ASCII characters.

The following items are followed by a name field only.

0000 - entry symbol. The symbol indicated in the name field is defined in this module, so the module should
be linked if the current file is being searched (as indicated by the S switch).

0001 - select common block. Instructs LINK to use the location counter associated with the common block
indicated in the name field for subsequent common relative items.

11

0010 - program name. The name of the relocatable module. LINK checks that the first item in each module
if a program name, and issues an error if it is not.

0011 - unused.

0100 - unused.

The following items are followed by a value field and a name field.

0101 - define common size. The value field determines the amount of memory to be reserved for the
common block described in the name field. The first size allocated to a given block must be larger
than or equal to any subsequent definitions for that block in other modules being linked.

0110 - chain external. The value field contains the head of a chain which ends with an absolute 0. Each
element of the chain is to be replaced with the value of the external symbol described in the name
field.

0111 - define entry point. The value of the symbol in the name field is defined by the value field.

1000 - unused.

The following items are followed by a value field only.

1001 - external plus offset. The following two bytes in the current segment must be offset by the value of
the value field after all chains have been processed.

1010 - define data size. The value field contains number of bytes in the data segment of the current module.

1011 - set location counter. Set the location counter to the value determined by the value field.

1100 - chain address. The value field contains the head of a chain which ends with an absolute 0. Each
element of the chain is to be replaced with the current value of the location counter.

1101 - define program size. The value field contains the number of bytes in the program segment of the
current module.

1110 - end module. Defines the end of the current module. if the value field contains a value other than
absolute 0, it is to be used as the start address for the program being linked. The next item in the file
will start at the next byte boundary.

The following item has no value field or name field.

12

1111 - end file. Follows the end module item of the last module in the file.

1.7. Format of IRL Files

An IRL file consists of three parts: a header, an index and a REL section.

The header contains 128 bytes defined as follows:

byte 0 - extent number of first record of REL section. byte I - record number of first record of REL
section. bytes 2-127 - currently unused.

The index consists of a number of entries corresponding to the entry symbol items in the REL section. The
entries are of the form:

I I I I I I I I I
| e | r | b | cl | c2 | . . . | cn | d |

 | | | | | | | | |

where:

e = extent offset from start of REL section to start of module r = record offset from start of extent to start of
module b = byte offset from start of record to start of module
cl-cn = name of symbol
d = end of symbol delimiter (OFEH)

The index is terminated by an entry in which cl = OFFH. The remainder of the record containing the terminating entry is
unused.

The REL section contains the relocatable object code as described in the previous section.

13

2. RMAC RELOCATING MACRO ASSEMBLER.

The CP/M Relocating macro Assembler, called RMAC, is a modified version of the CP/M Macro Assembler
(MAC). RMAC produces a relocatable object file (REL), rather than an absolute object file (HEX), which may be linked
with other modules produced by RMAC, or other language translators such as PL/I-80, to produce an absolute file ready
for execution.

The differences between RMAC and MAC are described in the following sections. For a complete description
of the assembly language and macro facilities, see CP/M MAC Macro Assembler: Language Manual and Application
Guide.

2.1. RMAC Operation

RMAC is invoked by typing

RMAC filename. fi1etype

followed by optional assembly parameters. If the filetype is not specified, ASM is assumed. RMAC produces three files:
a list file (PRN), a symbol file (SYM), and a relocatable object file (REL). Characters entered in the source file in lower
case appear in lower case in the list file, except for macro expansions.

The assembly parameter "H" in MAC, used to control the destination of the HEX file, has been replaced by
"R", which controls the destination of the REL file. Directing the REL file to the console or printer (RX or RP) is not
allowed, since the REL file does not contain ASCII characters.

Example:

RMAC TEST $PX SB RB

directs RMAC to assemble the file TEST.ASM, send the PRN file to the console, and put the symbol file (SYM) and the
relocatable object file (REL) on drive B.

2.2. Expressions

The operand field of a statement may consist of a complex arithmetic expression (as described in the MAC
manual, section 3) with the following restrictions:

1) In the expression A+B, if A evaluates to a relocatable value or

14

an external, then B must be a constant.

2) In the expression A-B, if A is an external, then B must be a constant.

3) In the expression A-B, if A evaluates to a relocatable value, then:

a) B must be a constant, or

b) B must be a relocatable value of the same relocation type as A (both must appear in a CSEG, DSEG,
or in the same COMMON block).

4) In all other arithmetic and logical operations, both operands must be absolute.

An expression error ('E') will be generated if an expression does not follow the above restrictions.

2.3. Assembler Directives

The following assembler directives have been added to support relocation and linking of modules:

ASEG use absolute location counter

CSEG use code location counter

DSEG use data location counter

COMMON use common location counter

PUBLIC symbol may be referenced in another module

EXTRN symbol is defined in another module

NAME name of module

The directives ASEG, CSEG, DSEG and COMMON allow program modules to be split into absolute, code,
data and common segments, which may be rearranged in memory as needed at link time. The PUBLIC and EXTRN
directives provide for symbolic references between program modules.

NOTE: While symbol names may be up to 16 characters, the first six characters of all symbols in PUBLIC,
EXTRN and COMMON statements must be unique, since symbols are truncated to six characters in the object module.

15

2.3.1. The ASEG Directive. The ASEG statement takes the form

label ASEG

and instructs the assembler to use the absolute location counter until otherwise directed. The physical memory locations
of statements following an ASEG are determined at assembly time by the absolute location counter, which defaults to 0
and may be reset to another value by an ORG statement following the ASEG statement.

2.3.2. The CSEG' Directive. The CSEG statement takes the form
label CSEG

and instructs the assembler to use the code location counter until otherwise directed. This is the default condition when
RMAC begins an assembly. The physical memory locations of statements following a CSEG are determined at link time.

2.3.3. The DSEG Directive. The DSEG statement takes the form
label DSEG

and instructs the assembler to use the data location counter until otherwise directed. The physical memory locations of
statements following a DSEG are determined at link time.

2.3.4. The COMMON Directive. The COMMON statement takes the
form

COMMON /identifier/

and instructs the assembler to use the COMMON location counter until otherwise directed. The physical memory
locations of statements following a COMMON statement are determined at link time.

2.3.5. The PUBLIC Directive. The PUBLIC statement takes the

form

16

PUBLIC label{,label,,label}

where each label is defined in the program. Labels appearing in a PUBLIC statement may be referred to by other
programs which are linked using LINK-80.

2.3.6. The EXTRN Directive. The form of the EXTRN statement is

EXTRN label{,label,,label}

The labels appearing in an EXTRN statement may be referenced but must not be defined in the program being assembled.
They refer to labels in other programs which have been declared PUBLIC.

2.3.7. The NAME Directive. The form of the NAME statement is

NAME 'text string'

The NAME statement is optional. It is used to specify the name of the relocatable object module produced by RMAC. If
no NAME statement appears, the filename of the source file is used as the name of the object module.

17

3. LIB PROGRAM LIBRARIAN.

The function of LIB is to handle libraries, which are files consisting of any number of relocatable object
modules. LIB can concatenate a group of REL files into a library, create an indexed library (IRL), select modules from a
library, and print module names and PUBLICS from a library.

3.1. LIB Operation

LIB is invoked by typing

LIB filename=filenamel,...,filenameN

This command will create a library called filename.REL from the files
filenamel.REL,...,filenameN.REL. If filetypes are omitted, REL is
assumed .

A flename may be followed by a group of module names enclosed in parentheses. Only the modules indicated
will be included in the LIB function being performed. If omitted, all modules in the file are included.

Example:

LIB TEST=A(Al,A2),B,C(Cl-C4,C6)

This command will create a file TEST.REL consisting of modules Al and A2 from A.REL, all the modules from B.REL,
and the modules between Cl and C4, and C6 from C.REL.

Any of several optional switches may be included in the command line for LIB. These switches are enclosed in
square brackets and appear after the first filename in the LIB command. The switches are:

I - create an indexed library (IRL)

M - print module names

P - print module names and PUBLICS

Examples:

LIB TEST=A,B,C

creates a file TEST.REL consisting of A.REL, B.REL and C.REL.

LIB TEST=TEST,D

appends D.REL to the end of TEST.REL.

18

LIB TEST(I]
creates an indexed library TEST.IRL from TEST.REL.

LIB TEST[I]=A,B,C,D
performs the same function as the preceding LIB examples, except no
TEST.REL file is created.

LIB TEST(P]
lists all the module names and PUBLICS in TEST.REL.

3.2. Error Messages

CANNOT CLOSE: The output file cannot be closed. The diskette may be
write protected.

DIRECTORY FULL: There is no directory space for the output file.
DISK READ ERROR: A file cannot be read properly.
DISK WRITE ERROR: A file cannot be written properly, probably due to

a full diskette.
FILE NAME ERROR: The form of a source file name is invalid.
NO FILE: The indicated file cannot be found.
NO MODULE: The indicated module cannot be found.

SYNTAX ERROR: The command line used to invoke LIB was not properly formed.

19

4. DATA REPRESENTATION AND INTERFACE CONVENTIONS.

This section describes the layout of memory used by various Digital Research language processors so that the
programmer can properly interface assembly language routines with high level language programs and the PL/I-80
runtime subroutine library. A set of standard subroutine interface conventions is also given so that programs produced by
various programmers and language processors can be conveniently interfaced.

4.1. Representation of Data Elements.

The internal memory representation of data items is presented below.

4.1.1. Pointers, and Entry and Label Variables. Variables which provide access to memory addresses are stored
as two contiguous bytes, with the low order byte stored first in memory. Pointer, Entry, and Label data items appear
graphically as shown below:

| LS |MS|

where "LS" denotes the least significant half of the address, and "MS" denotes the most significant portion. Note that MS
is the "page address," where each memory page is 256 bytes, and LS is the address within the page.

4.1.2. Fixed Binary Data Format. Simple single and double byte signed integer values are stored in Fixed Binary
format. Two modes are used, depending upon the precision of the data item. Fixed Binary values with precision 1-7 are
stored as single byte values, while data items with precision 8-15 are stored in a word (double byte) location. As with
other 8080, 8085, and Z-80 items, the least significant byte of multi-byte storage appears first in memory. All Fixed
Binary data is represented in two's complement form, allowing single byte values in the range -128 to +127, and word
values in the range -32768 to +32767. The values 0, 1, and -1 are shown graphically below, where each boxed value
represents a byte of memory, with the low order byte appearing before the high order byte:

Fixed Binary(7) Fixed Binary(15)
---- -------

| 00 | |00|00|
---- -------

20

Fixed Binary(7) Fixed Binary(15)
---- --------
|01| |01|00|
---- --------

Fixed Binary(7) Fixed Binary(15)
---- ---------
|FE| |FE|FF|
---- ---------

4.1.3. Bit Data Representation. Bit String data, like the Fixed Binary items shown above, are
represented in two forms, depending upon the declared precision. Bit Strings of length 1-8 are stored in a single
byte, while Bit Strings of length 9-16 occupy a word (double byte) value. Bit values are left justified in the
word, with "don't care" bits to the right when the precision is not exactly 8 or 16 bits. The least significant byte
of a word value is stored first in memory. The Bit String constant values '1'b, 'AO'b4, and '1234'b4 are stored as
shown below

Bit(8) Bit(16)
---- --------
|80| |00|80|

 ---- --------

 Bit (8) Bit (16)
 ---- ---------
 |AO| |00|AO|
 ----- ---------

 Bit (8) Bit (16)

 N/A |34|12|

4.1.4. Character Data Representation. Two forms of character data are stored in memory, depending
upon the declaration. Fixed character strings, declared as CHAR(n) without the VARYING attribute, occupy n
contiguous bytes of storage with the first string character stored lowest in memory. Character strings declared
with the VARYING attribute are prefixed by the character string length, ranging from 0 to 254. The length of
the area reserved for a CHAR(n) VARYING is n+l. Note that in either case, n cannot exceed 254. The string
constant

'Walla Walla Wash'

21

is stored in a CHAR(20) fixed character strinq as

|W|a|l|l|a| |W|a|l|l|a| |W|a|s|h| | | | |

This same string is stored in a CHAR(20) VARYING data area as

|lO|W|a|l|l|a| |W|a|l|l|a| |W|a|s|h|?|?|?|?|
--

where "10" is the (hexadecimal) string length, and "?" represents undefined character positions.

4.1.5.Fixed Decimal Data Representation. Decimal data items are stored in packedBCD form,
using nine's complement data representation. The least significant BCD pair is stored first in memory,
with one BCD digit position reserved for the sign. Positive numbers have a 0 sign, while negative
numbers have a 9 in the high order sign digit position. The number of bytes occupied by adecimal
number depends upon its declared precision. Given a decimal number with precision p, the number of
bytes reserved is the integer part of

 (P + 2) / 2

where p varies between 1 and 15, resulting in a minimum of 1 byte and a maximum of 8 bytes to hold a
decimal data item. Given a decimal number field ofprecision 5, the numbers 12345 and -2 are
represented as shown below

 ----------- ------------
|45|23|01| |98|99|99|
----------- ------------

4.1.6. Floating Point Binary Representation. Floating Point Binary numbers are stored in four
consecutive byte locations, no matter what the declared precision. The number is stored with a 24 bit
mantissa, which appears first in memory, followed by an 3-bit exponent. Following data storage
conventions, the least significant byte of the mantissa is stored first in memory. The floating point
number is normalized so that the most significant bit of the mantissa is "l" for non-zero numbers. A
zero mantissa is represented by an exponent byte of 00. Since the most significant bit ofthe mantissa
must be "l" for non-zero values, this bit position is replaced by the mantissa sign. The binary
exponent byte is biased by 80 (hexadecimal) so that 81 represents an exponent of 1 while 7F represents
an exponent of -1. The Floating Point Binary value 1.5 has the representation shown below

22

|00|00|40|81|

Note that in this case, the mantissa takes the bit stream form

0100 0000 0000 0000 0000 0000

which indicates that the mantissa sign is positive.Setting the (assumed) high order bit to "l" produces the
mantissa bit stream

1100 0000 0000 0000 0000 0000

Since the exponent 81 has a bias of 80, the binary exponent is 1, resulting in the binary value

1.100 0000 0000 0000 0000 0000

or, equivalently, 1.5 in a decimal base.

4.1.7. File Constant Representation. Each file constant in a PL/I-80 program occupies 32
contiguous bytes, followed by a variable length field of 0 to 14 additional bytes. The fields of a file constant
are all implementation dependent and subject to change without notice.

4.2. Layout of Aggregate Storage.
PL/I-80 data items are contiguous in memory with no filler bytes. Bit data is always stored unaligned.
Arrays are stored in row-major order, with the first subscript running slowest and the last subscript running
fastest. The RMAC COMMON statement is used to share data with PL/I-80 programs which declare data
using the EXTERNAL attribute. The following PL/I-80 program is used as an example:

declare
 a (10) bit(8) external,
 1 b external,

2 c bit(8) ,
2 d fixed binary(15),
2 e (0:2,0:1) fixed;

The following RMAC COMMON areas share data areas with the program containing the declaration given
above.

23

common /a/
x: ds 1

common /b/
c: ds 1
d: ds 2
e00: ds 2
eOl: ds 2
elO: ds 2
ell: ds 2
e20: ds 2
e2l: ds 2

where the labels eOO, eOl, e2l correspond to the PL/I-80 subscripted variable locations e (0, 0), e(0, 1), .
. . , e (2, 1) .

4.3. General Parameter Passing Conventions.

Communication between high-level and assembly language routines can be performed using the PL/I-80
general-purpose parameter passing mechanism described below. Specifically, upon entry to a PL/I-80 or assembly
language routine, the HL register pair gives the address of a vector of pointer values which, in turn, lead the the actual
parameter values. This situation is illustrated in the diagram below, where the address fields are assumed as shown for
this example:

H L Parm Address Actual Parameters
------- -------- ----------------
| 1000 | 1000: | 2000 | 2000:| parameter #1 |
------- -------- ----------------

| 3000 | 3000:| parameter #2|
-------- ----------------

| 4000 | 4000:| parameter #3|
-------- ----------------

.
 -------- -------------------
| 5000 | 5000: | last parameter |
-------- -------------------

The number of parameters, and the parameter length and type is determined implicitly by agreement between the calling
program and called subroutine.

Consider the following situation, for example. Suppose a PL/I-80 prog ram uses a considerable number of
floating point divide operations, where each division is by a power of two. Suppose also that the loop where the divisions
occur is speed-critical, and thus an assembly language subroutine will be used to perform the division. The assembly
language routine will simply decrement the binary exponent for the floating point number for each power of two in the
division, effectively performing the divide operations without the

24

overhead of unpacking, performing the general division operation, and repacking the result. During the division, however,
the assembly language routine could produce underflow. Thus, the assembly language routine will have to signal the
UNDERFLOW condition if this occurs.

The programs which perform this function are given on the following pages. The DTEST program, listed first,
tests the division operation. The external entry DIV2 is the assembly language subroutine that performs the division, and
is defined on line 4 with two parameters: a fixed(7) and a floating point binary value. The test value 100 is stored into "f"
on each loop at line 9, and is passed to the DIV2 subroutine on line 10. Each time DIV2 is called, the value of f is
changed to f/(2**i) and printed using a PUT statement. At the point of call, DIV2 receives a list of two addresses,
corresponding to the two parameters i and f, used in the computation.

The assembly language subroutine, called DIV2, is listed next. Upon entry, the value of i is loaded to the
accumulator, and the HL pair is set to point to the exponent field of the input floating point number. If the exponent is
zero, DIV2 returns immediately since the resulting value is zero. Otherwise, the subroutine loops at the labe1 "dby2"
while counting down the exponent as the power of two diminishes to zero. If the exponent reaches zero during this
counting process, an UNDERFLOW signal is raised.

The call to "?signal" within DIV2 demonstrates the assembly language set-up for parameters which use the
general-purpose interface. The ?signal subroutine is a part of the PL/I-80 subroutine library (PLILIB.IRL) . Th e HL
register pair is set to the signal parameter list, denoted by "siqlst. " The signal parameter list, in turn, is a vector of four
addresses which lead to the signal code "siqcode," the signal subcode "siqsub," the file name indicator "sigfil" (not used
here), and the auxiliary message "siqaux" which is the last parameter. The auxiliary message is used to provide additional
information to the operator when the error takes place . The signal subroutine prints the message until either the string
length is exhausted (32, in this case) or a binary 00 is encountered in the string.

The (abbreviated) output from this test program is shown following the assembly language listing. Note that the
loop counter i becomes negative when it reaches 128, but the processing within the DIV2 subroutine treats this value as
an unsigned magnitude value, thus the underflow occurs when i reaches -123.

4.4. Returning Values from Functions.

As an alternative to returning values through the parameter list, as described in the previous section, subroutines
can produce function values which are returned directly in the registers or on the

25

PL/I-80 V1.0, COMPILATION OF: DTEST

L: List Source Program

NO ERROR(S) IN PASS I

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION of: DTEST

1 a 0000 dtest:
2 a 0006 proc options(main);
3 c 0006 dcl
4 c 0006 div2 entry(fixed(7),float),
5 c 0006 i fixed(7),
6 c 0006 f float;
7 c 0006
8 c 0006 do i = 0 by 1;
9 c 000A f = 100;

10 c 0015 call div2(i,f);
11 c 001B put skip list('100 2
12 c 0063 end;
13 a 0063 end dtest;

CODE SIZE = 0063
DATA AREA = 0018

26

public div2
extrn ?signal

 ; entry:
; pl -> fixed(7) power of two
; p2 -> floating point number
; exit:
; pl -> (unchanged)
; p2 -> p2 / (2**pl)
div2: ;HL =.low(.pl)

0000 5E mov e,m ;low(.Pl)
0001 23 inx h ;HL = hiqh(.pl)
0002 56 mov d,m ;DE = pl
0003 23 inx h ;HL = low(p2)
0004 1A ldax d ;a = pl (power of two)
0005 5E mov e,m ;low(.p2)
0006 23 inx h ;HL = high(.p2)
0007 56 mov d,m ;DE = p2
0008 EB xchg ;HL = p2

;
 ; A = power of 2, HL = low byte of fp num
0009 23 inx h ;to middle of mantissa
000A 23 inx h ;to high byte of mantissa
000B 23 inx h ;to exponent byte
000C 34 inr m
000D 35 dcr m ;p2 already zero?
000E C8 rz ;return if so

dby2: ;divide by two
000F B7 ora a ;counted power of 2 to zero?
0010 C8 rz ;return if so
0011 3D dcr a ;count power of two down
0012 35 dcr m ;count exponent down
0013 C20F00 jnz dby2 ;loop again if no underflow

;underflow occurred, signal underflow condition
0016 210000 lxi h,siqlst ;signal parameter list
0019 CD0000 call ?signal ;signal underflow
001C C9 ret ;normally, no return

dseq
0000 0800 siglst: dw siqcod ;address of signal code
0002 0900 dw siqsub ;address of subcode
0004 0A00 dw siqfil ;address of file code
0006 0C00 dw sigaux ;address of aux messaqe
 ; end of parameter vector, start of params
0008 03 siqcod: db 3 ;03 = underflow
0009 80 sigsub: db 128 ;arbitrary subcode for id
000A 0000 sigfil: dw 0000 ;no associated file name
000C 0E00 sigaux: dw undmsq ;0000 if no aux messaqe
000E 20556E6465undmsq: db 32,’Underflow in Divide by Two',0
002A end

27

A> b:dtest

100 / 2 0 = 1.OOOOOOE+02
100 / 2 1 = 5.OOOOOOE+01
100 / 2 2 = 2.500000E+01
100 / 2 3 = 1.250000E+01
100 / 2 4 = 0.625000E+01
100 / 2 5 = 3. 125000E+00
100 / 2 6 = 1. 562500E+00
100 / 2 7 = 0.781250E+00
100 / 2 8 = 3.906250E-01
100 / 2 9 = 1.953125E-01
100 / 2 10 = 0.976562E-01
100 / 2 11 = 4 . 88281 2E-02
100 / 2 12 = 2.441406E-02
100 / 2 13 = 1.220703E-02
100 / 2 14 = 0.610351E-02
100 / 2 15 = 3.051757E-03
100 / 2 16 = 1.525878E-03
100 / 2 17 = 0.762939E-03
100 / 2 18 = 3. 814697E-04
100 / 2 19 = 1.907348E-04
100 / 2 20 = 0 .953674E-04
100 / 2 21 = 4.768371E-O'
100 / 2 22 = 2. 38 4185" J
100 / 2 23 = 1.192" .,-~-30
100 / 2 24 = 0 ' -487E-31
100 / 2 25 = 0.540743E-31
100 / 2 26 = 0.770372E-31
100 / 2 111 = 3.851859E-32
100 / 2 112 = 1.925929E-32
100 / 2 113 = 0.962964E-32
100 / 2 114 = 4.814824E-33
100 / 2 115 = 2 . 407412E-33
100 / 2 116 = 1.203706E-33
100 / 2 117 = 0.601853E-33
100 / 2 118 = 3 . 009265E-34
100 / 2 119 = 1.504632E-34
100 / 2 120 = 0.752316E-34
100 / 2 121 = 3 . 761581 E-35
100 / 2 122 = 1.880790E-35
100 / 2 123 = 0.940395E-35
100 / 2 124 = 4.701977E-36
100 / 2 125 = 2.350988E-36
100 / 2 126 = 1.175494E-36
100 / 2 127 = 0.587747E-36
100 / 2 -128 = 2.938735E-37
100 / 2 -127 = 1.469367E-37
100 / 2 -126 = 0.734683E-37
100 / 2 -125 = 3.673419E-38
100 / 2 -124 = 1.836709E-38
100 / 2 -123 = 0.918354E-38
100 / 2 -122 = 4.591774E-39
UNDERFLOW (128), Underflow in Divide by Two
Traceback: 017F 011B
End of Execution

28

stack. This section shows the general-purpose conventions for
returning data as functional values.

4.4.1. Returning Pointer, Entry, and Label Variables. Variables which provide access to memory addresses
occupy a word value, as described in the previous section. In the case of Pointer, Entry, and Label Variables, the values
are returned in the HL register pair. If a label variable is returned which can be the target of a GO To operation, it is the
responsibility of the subroutine containing the label -to restore the stack to the proper level when control reaches the
label.

4.4.2. Returning Fixed Binary Data. Functions which return Fixed Binary data items do so by leaving the result
in the A register " or HL register pair, depending upon the precision of the data item . Fixed Binary data with precision
1-7 are returned in A, while precision 8-15 items are returned in HL. It is always safe to return the value in HL, with the
low order byte copied to the A register, so that register A is equal to register L upon return.

4.4.3. Returning Bit String Data. Similar to Fixed Binary data items, Bit String data is returned in the A register,
or the HL register pair, depending upon the precision of the data item. Bit Strings of length 1-8 are returned in A, while
precision 9-16 items are returned in the HL pair. Note that Bit Strings are left justified in their fields, so the BIT(l) value
"true" is returned in the A register as 80 (hexadecimal). Again, it is safe to return a bit value in the HL register pair, with
a copy of the high order byte in A, so that register A is equal to register H upon return.

4.4.4. Returning Character Data. Character data items are returned on the stack, with the length of the string in
register A, regardless of whether the function has the VARYING attribute. The string

'Walla Walla Wash'
for example, is returned as shown in the diagram below:

29

---- -----------------------------------
A |10| |W|a|l|l|a| |W|a|l|l|a| |W|a|s|h| (low stack)
 ---- -----------------------------------

 ^
SP

where register A contains the string length 10 (hexadecimal), and the Stack Pointer (SP) addresses the first
character in the string.

4.4.5. Returning Fixed Decimal Data. Fixed Decimal data is always returned as a sixteen decimal
digit value (8 contiguous bytes) in the stack. The low order decimal pair is stored lowest in memory (at the
"top" of the stack), with the high order digit pair highest in memory. The number is represented in nine's
complement form, and sign-extended through the high order digit position, with a positive sign denoted by
0, and a negative sign denoted by 9. The decimal number -2, for example, is returned as shown below:

|98|99|99|99|99|99|99|99| (low stack)

 ^

 SP

4.4.6. Returning Floating Point Numbers. Floating Point numbers are returned as a four-byte
sequence at the top of the stack, regardless of the declared precision. The low order byte of the mantissa is
at the top of the stack, followed by the middle byte, then the high byte. The fourth byte is the exponent of
the number. The value 1.5 is returned as shown in the following diagram:

|00|00|40|81| (low stack)

 ^
SP

The sequence
POP D
POP B

loads the Floating Point value from the stack for manipulation, leaving the exponent in B, and the 24-bit
mantissa in C, D, and E. The result can be placed back into the stack using

30

PUSH B
PUSH D

An example of returning a functional value is shown in the two program listings which follow. The first
program, called FDTEST, is similar to the previous floating point divide test, but instead includes an entry definition for
FDIV2 which is an assembly language subroutine that returns the result in the stack. The FDIV2 subroutine is then listed,
which resembles the previous DIV2 program with some minor changes. First note that the input floating point value is
loaded into the BCDE registers so that a temporary copy can be manipulated which does not affect the input value. The
exponent field in register B is decremented by the input count, and returned on the stack before the PCHL is executed.

31

PL/I-80 V1.0, COMPILATION OF: FDTEST

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: FDTEST

1 a 0000 dtest:
2 a 0006 proc options(main);
3 c 0006 dcl
4 c 0006 fdiv2 entry(fixed(7) ,float)
5 c 0006 returns (float),
6 c 0006 i fixed(7),
7 c 0006 f float;
8 c 0006
9 c 0006 do i = 0 by 1;

10 c 000A put skip list('100 / 2 **’,I,’=’,
11 c 0055 fdiv2(i,100))
12 c 0055 end;
13 a 0055 end dtest;

CODE SIZE = 0055
DATA AREA = 0018

32

public fdiv2
extrn ?signal
entry:

; pl -> fixed(7) power of two
; p2 -> floating point number
; exit:
; pl -> (unchanged)
; p2 -> (unchanged)
; stack: p2 / (2 ** pl)
fdiv2: ;HL = .low(.pl)

0000 5E mov e,m ;low(.Pl)
0001 23 inx h ;HL = .high(.pl)
0002 56 mov d,m ;DE = .pl
0003 23 inx h ;HL = .low(p2)
0004 1A ldax d ;a = pi (power of two)
0005 5E mov e,m ;low(.p2)
0006 23 inx h ;HL = .hiqh(.p2)
0007 56 mov d,m ;DE = .P2
0008 EB xchg ;HL = .p2

; A = power of 2, HL = low byte of fp num
0009 5E mov e,m ;E = low mantissa
OOOA 23 inx h ;to middle of mantissa
OOOB 56 mov d,m ;D = middle mantissa
OOOC 23 inx h ;to high byte of mantissa
OOOD 4E mov c,m ;C = high mantissa
OOOF 23 inx h ;to exponent byte
OOOF 46 mov b,m ;B = exponent
0010 04 inr b ;B = 00?
0011 05 dcr b ;becomes 00 if so
0012 CA2AOO jz fdret ;to return from float div

dby2: ;divide by two
0015 B7 ora a ;counted power of 2 to zero?
0016 CA2AOO jz fdret ;return if so
0019 3D dcr a ;count power of two down
001A 05 dcr b ;count exponent down
001B C21500 jnz dby2 ;loop again if no underflow

;underflow occurred, signal underflow condition
001E 210000 lxi h,siglst ;signal parameter list
0021 CDOOOO call ?signal ;signal underflow
0024 010000 lxi b,0 ;clear to zero
0027 110000 lxi d,0 ;for default return

;
002A El fdret: POP h ;recall return address
002B C5 push b ;save high order fp num
002C D5 push d ;save low order fp num
002D E9 pchl ;return to calling routine

;
dseg

0000 0800 siglst: dw sigcod ;address of signal code
0002 0900 dw siqsub ;address of subcode
0004 OAOO dw sigfil ;address of file code
0006 0C00 dw sigaux ;address of aux message
 ; end of parameter vector, start of params
0008 03 siqcod: db 3 ;03 = underflow
0009 90 siqsub: db 128 ;arbitrary subcode for id
000A 0000 siqfil: dw 0000 ;no associated file name
000C 0E00 sigaux: dw undmsg ;0000 if no aux message
000E 20556E6465undmsg: db 32,'Underflow in Divide by Two',O
002A end

5. PL/I-80 RUNTIME SUBROUTINES.

33

The PL/I-80 Runtime Subroutine Library (PLILIB.IRL) is discussed in this section, along with the optional
subroutines for direct CP/M Input Output. The information given here is useful when PL/I-80 is used as a "systems
language," rather than an application language, since direct access to implementation dependent CP/M functions is
allowed. Note that the use of these features makes your program very machine and operating system dependent.

5.1. Stack and Dynamic Storage Subroutines.

A number of implementation-dependent functions are included in the PL/I-80 Runtime Library which provide
access to stack and dynamic storage structures. The functions are discussed below, with sample programs which illustrate
their use. The stack is placed above the code and data area, and below the dynamic storage area. The default value of the
stack size is 512 bytes, but can be changed using the STACK(n) option in the OPTIONS portion of the main program
procedure heading. In general, the PL/I-80 dynamic storage mechanism maintains a list of all unallocated storage. Upon
each request for storage, a search is made to find the first memory segment which satisfies the request size. If no storage
is found, the ERROR(7) condition is signaled (Free Space Exhausted) otherwise, the requested segment is taken from the
free area, and the remaining portion goes back to the free 'space list. In version 1.0 of PL/I-80, storage is dynamically
allocated only upon entry to RECURSIVE procedures, upon explicit or implicit OPENS for files which access the disk,
or upon executing an ALLOCATE statement. In any case, an even number of bytes, or whole words, is always allocated,
no matter what the request size.

5.1.1. The T0TWDS and MAXWDS Functions. It is often useful to find the amount of storage available at any
given point in the execution of a particular program. The TOTWDS (Total Words) and MAXWDS (Max Words)
functions can be used to obtain this information. The functions must be declared in the calling program as

dcl totwds returns(fixed(15));
dcl maxwds returns(fixed(15));

When invoked, the TOTWDS subroutine scans the free storage list and returns the total number of words (double bytes)
available in the free list. The MAXWDS subroutine performs a similar function, but returns the size of the largest
segment in the free list, again in words. A subsequent ALLOCATE statement which specifies a segment size not

34

exceeding MAXWDS will not cause the ERROR(7) signal to be raised, since at least that much storage is available. Note
that since both TOTWDS and MAXWDS count in word units, the values can be held by FIXED BINARY(15) counters.
If, during the scan of free memory, invalid link words are encountered (usually due to a out-of-bounds subscript or
pointer store operation), both TOTWDS and MAXWDS return the value -1. Otherwise, the returned value will be a
non-negative integer value.

5.1.2. The ALLWDS Subroutine. The PL/I-80 Runtime Library contains a subroutine, called ALLWDS, which
is useful in controlling the dynamic allocation size. The subroutine must be declared in the calling program as

dcl allwds entry(fixed(15)) returns(ptr);

The ALLWDS subroutine allocates a segment of memory of the size given by the input parameter, in words (double
bytes). if no segment is available, the ERROR(7) condition is raised. Further, the input value must be a non-negative
integer value. The ALLWDS function returns a pointer to the allocated segment.

An example of the use of TOTWDS, MAXWDS, and ALLWDS functions is given in the ALLTST program on
the next page. A sample program interaction is given following the program listing.

5.1.3. The STKSIZ Function. The function STKSIZ (Stack Size) returns the current stack size in bytes whenever
it is called. This function is particularly useful for checking possible stack overflow conditions, or in determining the
maximum stack depth during program testing. The STKSIZ function is declared in the calling program as

dcl stksiz returns(fixed(15));

A Sample use of the STKSIZ function appears in the listing of the recursive Ackermann test. In this case, it is
used to check the maximum stack depth during the recursive function processing. An interaction with this program is
given following the program listing.

35

PL/I-80 V1.0, COMPILATION OF: ALLTST

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: ALLTST

1 a 0000 alltst:
2 a 0006 proc options(main);
3 a 0006 /* assembly language interface to
4 a 0006 dynamic storage allocation module
5 c 0006 dcl
6 c 0006 totwds returns(fixed(15)),
7 c 0006 maxwds returns(fixed(15)) '
8 c 0006 allwds entry(fixed(15)) returns(ptr);
9 c 0006

10 c 0006 dcl
11 c 0006 allreq fixed(15),
12 c 0006 memptr ptr,
13 c 0006 meminx fixed(15),
14 c 0006 memory (0:0) bit(16) based(memptr);
15 c 0006
16 c 0006 do while('l'b);
17 c 0006 put edit (totwds(),' Total Words Available',
18 c 004F maxwds(),' Maximum Segment Size',
19 c 004F 'Allocation Size? ’)
20 c 004F (2(skip,f (6) ,a), skip, a)
21 c 004F get 1ist (a1 req) ;
22 c 0067 memptr = allwds(allreq);
23 c 0070 put edit('Allocated', allreq,
24 c 00B2 ' Words at ',unspec(memptr))
25 c 00B2 (skip,a,f(6),a,b4);
26 c 00B2
27 c 00B2 /* clear memory as example
28 c 00B2 do meminx = 0 to allreq-1 ;'
29 c 00CC memory(meminx) = 10000lb4;
30 c 00E7 end;
31 c 00E7 end;
32 a 00E7 end alltst;

CODE SIZE = 00E7
DATA AREA = 0078

36

A>B:ALLTST

25596 Total Words Available 25596
Maximum Segment Size
Allocation Size? 0

Allocated 0 Words at 250A
25594 Total Words Available
25594 maximum Segment Size

Allocation Size? 100

Allocated 100 Words at 250E
25492 Total Words Available
25492 maximum Segment Size

Allocation Size? 25000

Allocated 25000 Words at 25DA
490 Total Words Available 490
Maximum Segment Size
Allocation Size? 490

Allocated 490 Words at E92E
0 Total Words Available
0 Maximum Segment Size

Allocation Size? 1

ERROR (7) , Free Space Exhausted
Traceback: 016D
End of Execution

37

PL/I-80 V1.0, COMPILATION OF: ACKTST

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: ACKTST

1 a 0000 ack:
2 a 0006 procedure options(main,stack(2000));
3 c 0006 dcl
4 c 0006 (m, n) fixed ,
5 c 0006 (maxm,maxn) fixed,
6 c 0006 ncalls decimal(6),
7 c 0006 (curstack, stacksize) fixed,
8 c 0006 stksiz entry returns(fixed);
9 c 0006

10 c 0006 put skip list(‘Type max m,n: ‘);
11 c 0022 get list(maxm,maxn);
12 c 0046 do m = 0 to maxm;
13 c 005F do n = 0 to maxn;
14 c 0078 ncalls = 0;
15 c 0088 curstack = 0;
16 c 008E stacksize = 0;
17 c 0091 put edit
18 c 012F (‘Ack(',m,',',n,')=',ackermann(m,n),
19 c 012F ncalls,' Calls,',stacksize,' Stack Bytes')
20 c 012F (skip,a,2(f(2) ,a) ,f (6) ,f(7) ,a,f(4) ,a);
21 c 012F end;
22 c 012F end;
23 c 012F stop;
24 c 0132
25 c 0132 ackermann:
26 c 0132 procedure(m,n) returns(fixed) recursive;
27 e 0132 dcl
28 e 015C (m,n) fixed;
29 e 015C ncalls = ncalls + 1;
30 e 0177 curstack = stksiz();
31 e 017D if curstack > stacksize then
32 e 018A stacksize = curstack;
33 e 0190 if m = 0 then
34 e 0199 return (n+l
35 e OlAl if n = 0 then
36 e 01AA return(ackermann(m-1,1));
37 e 01BB return (ackermann(m-1 ,ackermann(m,n-1)
38 c 01DC end ackermann;
39 a 01DC end ack;

38

CODE SIZE = 01DC
DATA AREA = 0082

39

A>B:ACKTST

Type max m,n: 6,6

Ack(0, 0)= 1 1 Calls, 4 Stack Bytes
Ack(0, 1)= 2 1 Calls, 4 Stack Bytes
Ack(0, 2)= 3 1 Calls, 4 Stack Bytes
Ack(0, 3)= 4 1 Calls, 4 Stack Bytes
Ack(0, 4)= 5 1 Calls, 4 Stack Bytes
Ack(0, 5)= 6 1 Calls, 4 Stack Bytes
Ack(0, 6)= 7 1 Calls, 4 Stack Bytes
Ack(1, 0)= 2 2 Calls, 6 Stack Bytes
Ack(1, 1)= 3 4 Calls, 8 Stack Bytes
Ack(1, 2)= 4 6 Calls, 10 Stack Bytes
Ack(1, 3)= 5 8 Calls, 12 Stack Bytes
Ack(1, 4)= 6 10 Calls, 14 Stack Bytes
Ack(1, 5)= 7 12 Calls, 16 Stack Bytes
Ack(1, 6)= 8 14 Calls, 18 Stack Bytes
Ack(2, 0)= 3 5 Calls, 10 Stack Bytes
Ack(2, 1)= 5 14 Calls, 14 Stack Bytes
Ack(2, 2)= 7 27 Calls, 18 Stack Bytes
Ack(2, 3)= 9 44 Calls, 22 Stack Bytes
Ack(2, 4)= 11 65 Calls, 26 Stack Bytes
Ack(2, 5)= 13 90 Calls, 30 Stack Bytes
Ack(2, 6)= 15 119 Calls, 34 Stack Bytes
Ack(3, 0)= 5 15 Calls, 16 Stack Bytes
Ack(3, 1)= 13 106 Calls, 32 Stack Bytes
Ack(3, 2)= 29 541 Calls, 64 Stack Bytes
Ack(3, 3)= 61 2432 Calls, 128 Stack Bytes
Ack(3, 4)= 125 10307 Calls, 256 Stack Bytes
Ack(3, 5)=

40

5.2. PL/I-80 Runtime Subroutine Entry Points.

The standard PL/I-80 Runtime Library entry points are listed below. The entry point name is shown to the left,
followed by the input value registers and the result registers. A short explanation is given on the right. Note that this list
does not include the environmental or 1/0 operators since these entry points may vary from version to version. Further,
the definitions shown below are for general information purposes only, and are subject to change without notice. The
register names are given in capital letters, M(r) denotes memory addressed by the register pair r, and ST represents a
stacked value.

name parameters result comment or definition
----- ---------- ------ ---------------------------

im22n DE HL HL word*word integer multiply
id22n DE HL HL word/word integer divide
is22n DE HL HL word-word integer subtract
in20n HL HL -word
f140m HL ST fp load from M(HL) to stack
fx44s ST HL M(HL) fp xfer from stack to M(HL)
fx44m DE HL M(HL) fp xfer from M(HL) to M(DE)
fa44s ST ST ST fp add stack+stack to stack
fa44m DE HL ST fp add M(DE)+M(HL) to stack
fa441 ST HL ST fp add stack+M(HL) to stack
fa44r HL ST ST fp add M(HL)+stack to stack
fs44s ST ST ST fp sub stack-stack to stack
fs44m DE HL ST fp sub M(DE)-M(HL) to stack
fs441 ST HL ST fp sub stack-M(HL) to stack
fs44r HL ST ST fp sub M(HL)-stack to stack
fm44s ST ST ST fp mul stack*stack to stack
fm44m DE HL ST fp mul M(DE)*M(HL) to stack
fm441 ST HL ST fp mul stack*M(HL) to stack
fm44r HL ST ST fp mul M(HL)*stack to stack
fd44s ST ST ST fp div stack/STack to stack
fd44m DE HL ST fp div M(DE)/M(HL) to stack
fd441 ST HL ST fp div stack/M(HL) to stack
fd44r HL ST ST fp div M(HL)/STack to stack
fc44s ST ST ST fp comp stack:stack to stack
fc44m DE HL ST fp comp M(DE):M(HL) to stack
fc441 ST HL ST fp comp stack:M(HL) to stack
fc44r HL ST ST fp comp M(HL):stack to stack
fn40s ST ST fp negate stack
fn40m HL ST fp load from M(HL) and negate
fe40s ST A float p extract sign from stack
fe40m HL A float p extract sign from memory

1 => positive sign (non zero set)
0 => zero result (zero flag set)

-1 => negative sign (minus set)
fmodf ST ST ST floating point mod(x,y)
fabsf ST ST floating point abs(x)
fmaxf ST ST ST floating point max(x,y)
fminf ST ST ST floating point min(x,y)

41

froun ST A ST floating point round(x,k)
ftrnc ST ST floating point trunc(x)
fflor ST ST floating point floor(x)
fceil ST ST floating point ceil(x)
fexop ST A ST fp ** k (k pos constant)
ffxop ST ST ST x ** y (exp(y*log(x))

bcl2n D HL HL 8/16 bit concatenate, where
B=length of d, C=mask

bc22n DE HL HL 16/16 bit concatenate, where
B=length of d, C=mask

bs116 B HL HL bit shift left 16, size in b
bsl08 A B A bit shift left 8, size in b
bst08 A B C HL M(HL) bit substring store bit(8) in

A to bit(8) in memory at HL,
B = index, C = length

bst16 B C DE HL M(HL) bit substring store bit(16) in
DE to bit(16) in memory at HL

bix08 A B D H A/HL bit index, A=source, B=search
D=len(source), E=len(search)

bix16 B C DE HL A/HL bit index, B=len(source),
C=Ien(search), DE=source,
HL=search

boolf B DE HL HL bool(x,y,b), B = 4-bit mask
x,y operands in DE and HL

iel2n A HL sign extend A to HL
ielOn A A inteqer extract sign (8-bit)
ie20n HL A integer extract sign (16-bit)
imdop DE HL HL integer mod(x,y)
iab07 A A integer 7 abs(i)
iabl5 HL HL integer 15 abs(i)
imaxf DE HL HL integer max(x,y)
iminf DE HL HL integer min(x,y)
iroun HL A HL integer round(i,k)
iexop HL A HL integer ** k (k pos constant)
slvts HL A string load varying to stack

A=length of string on return
slcts A HL string load char to stack

A=Iength of char string
ssvfs A B HL string store varying from stack

A=current len, B=max length
sscfs A B HL string store char from stack
smvvm A DE HL string move vary to vary in memory

A=max target len, DE=source, HL=tarqet
smvcm A DE HL string move vary to char in memory

A=target length
smcvm A B DE HL strinq move char to vary in memory

A=max target len, B=source len
smccm A B DE HL A=target len, B=source len
sjsts A ST ST' string juxtapose (catenate) stack

A=Iength of left, ST=chars of left
ST' = pushed psw with length of right
followed by chars of right

sjscm A B HL string juxtapose stack with char memory
A=stacked len, B=char len, HL=.char

42

sjsvm A HL string juxtapose stack with vary memory
savvm A B HL string append vary to vary in memory

A=char len, B=max target length
sasvm A B HL string append stack to vary in memory

A=stacked length, B=max target length
sacvm A B HL string append char to vary in memory

A=char len, B=max target length
scccM A B DE HL string compare char to char in memory

A=len right, B=len left,
DE = char left, HL = char right

sccvm B DE HL string compare char to vary in memory
B=len left, DE=.char, HL=.vary

scvcm A DE HL string compare vary to char in memory
A=len right char, DE=.vary, HL=.char

scvvm DE HL string compare vary to vary in memory
DE=.vary left, HL=.vary right

scscm A B HL string compare stack to char in memory
A=len stk, B=len char, HL=.char

scsvm A HL string compare stack to vary in memory
A=len stk, HL=.vary

sccms A B HL string compare char in mem to stack
A=len stk, B=len char, HL=.char

scvms A HL string compare vary in mem to stack
A=Ien stk, HL=.vary

scsts A string compare stack to stack
A=len right element on stack,
ST is stack right string, next is
pushed psw with len left string,
followed by left string, result:
sign value & cond if 1 < r,
zero value & cond if I = r,
pos value & cond if 1 >= r,
nzer value & cond if 1 > r.

cs2ad A E HL char substr(ex,ei) address
A=lenqth, E=ei, HL=ex
A=result length on return

cs3ad A C E HL char substr(ex,ei,el) address
C=el
A=result length on return

vs2ad E HL vary substr(ex,ei) address
E=ei, HL=ex
A=result length on return

vs3ad C E HL vary substr(ex,ei,el) address
C=el
A=result length on return

cxccm A B DE A/HL str index char to char in memory
A=len right, B=Ien left,
DE = char left, HL = char right

cxcvm B DE A/HL str index char to vary in memory
B=len left, DE=.char, HL=.vary

cxvcm A DE A/HL str index vary to char in memory
A=.len right char, DE=.vary, HL=.char

cxvvm DE A/I~L str index vary to vary in memory
DE=.vary left, HL=.vary right

43

cxscm A B A/HL str index stack to char in memory

44

A=len stk, B=Ien char, HL=.char
cxsvm A A/HL str index stack to vary in memory

A=len stk, HL=.vary
cxcms A B A/HL str index char in mem to stack

A=len stk, B=len char, HL=.char
cxvms A A/HL str index vary in mem to stack

A=len stk, HL=.vary
cxsts A str index stack to stack

A=len right element on stack,
ST is stack right string, next is
pushed psw with len left string,
followed by left string, result:
A/HL = 0 if right not found in
left, otherwise index returned

verop A ST ST A/A/HL verify(s,c), A=len(c), st
has chars(c) len(s) chars(s)

colop A/ST collateo, A=128, stack has
xl2op A ST ST A/ST translate(s,t), A=len(t),

stack has chars(t) , s
xl3op A ST ST ST A/ST translate(s,t,x) A=len(x),

stack has chars(x), t, s
0,1, ..., 127 (ascii chars)

d1dop A HL ST decimal load to stack, A = prec
dasop A ST HL decimal assign, stack to memory
dadop ST ST ST decimal add to stack
dsuop ST ST ST decimal subtract to stack
dngop ST ST decimal negate to stack
dcmop ST A decimal compare operator
dexop ST ST ST decimal exponentiate to stack
dmuop ST ST ST decimal multiply to stack
ddvop ST ST ST decimal divide to stack
dsiop ST A decimal sign extract
dmodf ST ST ST decimal mod(x,y)
dabsf ST ST decimal abs(x)
dmaxf s,r ST ST decimal max(x,y)
dminf ST ST ST decimal min(x,y)
droun ST A ST decimal round(x,k)
dtrnc ST ST decimal trunc(x)
dflor ST ST decimal floor(x)
dceil ST ST decimal ceil(x)
dexop ST A ST decimal ** k (k pos constant)
qcdop A B ST ST convert character to decimal

A string length, B = scale
ST character string, returns
ST decimal number

qddsl A ST ST decimal/decimal left shift
A = shift count

qddsr A ST ST decimal/decimal right shift
A = shift count

qicop A HL convert integer to char in stack
A=string size, HL=integer value

qvcop A/ST A/ST convert varying to char

45

qi07d A ST convert fix(7) to decimal
qil5d HL ST convert fix(15) to decimal
qi07f A ST convert fix(7) to float

46

qil5f HL ST convert fix(15) to float
qfi07 ST A convert float to fix(7)
qfil5 ST HL convert float to fix(15)
qfcss A ST A/ST convert float-char stack to stack

A=target length, ST=fp number
qfcms A M(HL) A/ST convert float-char memory to stack
qb08c A B ST convert bit(8) in a, to string

in stack, with precision b
qbl6c HL B ST convert bit(16) in HL to string
qb08i A B HL convert bit(8) in A to fixed

with precision B in HL
qbl6i HL B HL convert bit(16) to fixed
qi07b A B A convert fix(<8) to bit(8)

fixed precision in b
qil5b HL B HL convert fix(<16) to bit(16)
qdi07 ST A convert dec in stack to fix(7)
qdil5 ST HL convert dec in stack to fix(15)
qciop A/ST HL convert char in stack to integer
qcfop A/ST ST convert char in stack to float
qccop A B ST A/ST convert char to char on stack

A=len(s), B=converted length
return A=b, ST trunc or extend

nstop BC DE HL M(HL) non-computational store, move
M(DE) to M(HL) for BC bytes

nc22n DE HL A double byte non-computational
compare: zero flag set if
DE = HL, non-zero otherwise

ncomp BC DE HL M(HL) non-computational compare,
M(DE) - M(HL;) , set flags

5.3. Direct CP/M Function Calls.

Access to all CP/M version 1 and 2 functions, and equivalent MP/M calls, is accomplished through the optional
subroutines included in PLIDIO.ASM, given in the listing of Appendix A, and included in source form on the PL/I-80
diskette.

The PLIDIO.ASM subroutines are not included as a part of the standard PLILIB.IRL file because specific
applications may require various changes to the direct CP/M functions which either remove operations to decrease space,
or alter the manner in which the interface to a specific function takes place. Note that if the interface to a function is
changed, it is imperative that the name of the entry point is also changed to avoid confusion when the program is read by
another programmer.

The relocatable file, PLIDIO.REL, is created by assembling the source program using RMAC:

rmac plidio $pz+s

47

(the $pz+s option avoids production of the listing and symbol files) . Given that a PL/I-80 program, such as
DIOCOPY.PLI, is present on the disk, the DIOCOPY.REL file is produced by typing: pli diocopy

(a listing of the DIOCOPY program is given in Appendix C). These two
programs are then linked with the PLILIB.IRL file by typing:

link diocopy,plidio

resulting in the file DIOCOPY.COM which is a program that directly executes under CP/M.

The file DIOMOD.DCL is a source file containing the standard PLIDIO entry point declarations so that they
can be conveniently copied into the source program during compilation using the "include" statement

%include ‘x:diomod.dcl’;

where the optional "x:" drive prefix indicates the drive name (A: through P:) containing the DIOMOD.DCL file. The
drive prefix need not be present if the DIOMOD.DCL file is on the same drive as the PLI source file. The contents of the
DIOMOD.DCL file is shown below, and
in the listing of Appendix C.

dcl

memptr entry returns (ptr),
memsiz entry returns (fixed(15)),
memwds entry returns (fixed(15)),
dfcb0 entry returns (ptr),
dfcbl entry returns (ptr),
dbuff entry returns (ptr),
reboot entry,
rdcon entry returns (char(l)),
wrcon entry (char(l)),
rdrdr entry returns (char(l)),
wrpun entry (char(l)),
wrlst entry (char(l)),
coninp entry returns (char(l)),
conout entry (char(l)),
rdstat entry returns (bit(l)),
getio entry returns (bit(8)),
setio entry (bit(8)),
wrstr entry (ptr),
rdbuf entry (ptr),
break entry returns (bit(l)),
vers entry returns (bit(16)),
reset entry,
select entry (fixed(7)),
open entry (ptr) returns (fixed(7)),
close entry (ptr) returns (fixed(7)),
sear entry (ptr) returns (fixed(7)),

48

searn e n try returns (fixed(7)),
delete entry (ptr),
rdseq entry (ptr) returns (fixed(7)),
wrseq entry (ptr) returns (fixed(7)),
make entry (ptr) returns (fixed(7)),
rename entry (ptr),
logvec entry returns (bit(16)),
curdsk entry returns (fixed(7)),
setdma entry (ptr) ,
allvec entry returns (ptr),
wpd is k en try,
rovec entry returns (bit(16)),
filatt e ntry (ptr),
getdpb entry returns (ptr),
getusr entry returns (fixed(7)),
setusr entry (fixed(7)) ,
rdran entry (ptr) returns (fixed(7)),
wrran entry (ptr) returns (fixed(7)),
filsiz entry (ptr),
setrec entry (ptr),
resdrv entry (bit (16)
wrranz entry (ptr) returns (fixed(7));

Three programs are included which illustrate the use of the PLIDIO calls. Appendix B lists the DIOCALLS
program that gives examples of all the basic functions, while Appendix C shows how the fundamental disk 1/0 operations
take place, in a program called DIOCOPY which performs a fast file-to-file copy function. The last program, given in
Appendix D, illustrates the operation of the random access primitives. These programs are designed to demonstrate all of
the PLIDIO entry points, and show various additional PL/I-80 programming facilities in the process.

The file FCB.DCL is used throughout DIOCOPY and DIORAND to define the body of each File Control Block
declaration. This file is copied into the source program during compilation using the statement:

%include 'x:fcb.dcl';

where, again, "x:" denotes the optional drive prefix for the drive containing the FCB.DCL file.

Note that the use of these entry points generally precludes the use of some PL/I-80 facilities. In particular, the
dynamic storage area is used by the PL/I-80 system for recursive procedures and file 1/0 buffering. (Be aware that there
are no guarantees that the dynamic storage area will not be used for other purposes as additional facilities are added to
PL/I-80.) Thus, the use of the MEMPTR function as shown in Appendix B disallows the use of dynamic storage
allocation functions. Further, you must ensure that the various file maintenance functions, such as delete and rename do
not access a file which is currently open in the PL/I-80 file system. Simple peripheral access, as shown in these examples,
is generally safe since no buffering takes place in this case.

49

 APPENDIX A:

LISTING OF "PLIDIO"
DIRECT CP/M CALL ENTRY POINTS

50

CP/M RMAC ASSEM 0.4 #001 DIRECT CP/M CALLS FROM PL/I-80
name 'DIOMOD'
title 'Direct CP/M Calls From PL/I-80'

cp/m calls from pl/i for direct i/o

public memptr ;return pointer to base of free mem
public memsiz ;return size of memory in bytes
public memwds ;return size of memory in words
public dfcb0 ;return address of default fcb 0
public dfcbl ;return address of default fcb 1
public dbuff ;return address of default buffer
public reboot ;system reboot (#0)
public rdcon ;read console character (#l)
public wrcon ;write console character(#2)
public rdrdr ;read reader character (#3)
public wrpun ;write punch character (#4)
public wrlst ;write 1 ' ist character (#5)
public coninp ;direct console input (#6a)
public conout ;direct console output (#6b)
public rdstat ;read console status (#6c)
public qetio ;get io byte (#8)
public setio ;set i/o byte (#9)
public wrstr ;write string (#10)
public rdbuf ;read console buffer (#10)
public break ;get console status (#11)
public vers ;get version number (#12)
public reset ;reset disk system (#13)
public select ;select disk (#14)
public open ;open file (#15)
public close ;close file (#16)
public sear ;search for file (#17)
public searn ;search for next (#18)
public delete ;delete file (#l 9)
public rdseq ;read file sequential mode (#20)
public wrseq ;write file sequential mode (#21)
public make ;create file (#22)
public rename ;rename file (#23)
public logvec ;return login vector (#24)
public curdsk ;return current disk number (#25)
public setdma ;set DMA address (#26)
public allvec ;return address of alloc vector (#27)
public wpdisk ;write protect disk (#28)
public rovec ;return read/only vector (#29)
public filatt ;set file attributes (#30)
public getdpb ;get base of disk parm block (#31)
public qetusr ;get user code (#32a)
public setusr ;set user code (#32b)
public rdran ;read random (#33)
public wrran ;write random (#34)
public filsiz ;random file size (#35)
public setrec ;set random record pos (#36)

51

public resdrv ;reset drive (#37)
public wrranz ;write random, zero fill (#40)

52

CP/M RMAC ASSEM 0.4 #002 DIRECT CP/M CALLS FROM PL/I-80

extrn ?begin ;beginning of free list
extrn ?boot ;system reboot entry point
extrn ?bdos ;bdos entry point
extrn ?dfcb0 ;default fcb 0
extrn ?dfcbl ;default fcb 1
extrn ?dbuff ;default buffer

equates for interface to cp/m bdos

OOOD = cr equ Odh ;carriage return
OOOA = lf I equ Oah ;line feed
001A = eof equ lah ;end of file
0001 = readc equ 1 ;read character from console
0002 = writc equ 2 ;write console character
0003 = rdrf equ 3 ;reader input
0004 = p unf equ 4 ;punch output
0005 = l istf equ 5 ;list output function
0006 = diof equ 6 ;direct i/o, version 2.0
0007 = getiof equ 7 ;get i/o byte
0008 = setiof equ 8 ;set i/o byte
0009 = p rintf equ 9 ;print string function
OOOA = rdconf equ 10 ;read console buffer
OOOB = statf equ 11 ;return console status
OOOC = versf equ 12 ;get version number
OOOD = resetf equ 13 ;system reset
OOOE = seldf equ 14 ;select disk function
OOOF = openf equ 15 ;open file function
0010 = closef equ 16 ;close file
0011 = serchf equ 17 ;search for file
0012 = serchn equ 18 ;search next
0013 = deletf equ 19 ;delete file
0014 = readf equ 20 ;read next record
0015 = writf equ 21 ;write next record
0016 = makef equ 22 ;make file
0017 = renamf equ 23 ;rename file
0018 = loginf equ 24 ;get login vector
0019 = cdiskf equ 25 ;get current disk number
001A = setdmf equ 26 ;set dma function
001B = getalf equ 27 ;get allocation base
001C = wrprof equ 28 ;write protect disk
001D = getrof equ 29 ;get r/o vector
001E = setatf equ 30 ;set file attributes
001F = getdpf equ 31 ;get disk parameter block
0020 = userf equ 32 ;set/get user code
0021 = rdranf equ 33 ;read random
0022 = wrranf equ 34 ;write random
0023 = filszf equ 35 ;compute file size
0024 = setrcf equ 36 ;set random record position
0025 = rsdrvf equ 37 ;reset drive function
0028 = wrrnzf equ 40 ;write random zero fill

53

54

CP/M RMAC ASSEM 0.4 #003 DIRECT CP/M CALLS FROM PL/I-80

utility functions

general purpose routines used upon entry

getpl: ;get single byte parameter to register e
0000 5E mov e,m ;low (addr)
0001 23 inx h
0002 56 mov d,m ;high(addr)
0003 EB xchg ;hl = char
0004 5E mov e,m ;to register e
0005 C9 ret

getp2: ;get single word value to DE
getp2i: ; (equivalent to qetp2)

0006 CDOOOO call getpl
0009 23 inx h
OOOA 56 mov d,m ;get high byte as well
OOOB C9 ret
 ;

getver: ;get cp/m or mp/m version number
OOOC E5 push h ;save possible data adr
OOOD OEOC mvi c,versf
OOOF CDOOOO call ?bdos
0012 El pop h ;recall data addr
0013 C9 ret
 ;

chkv20: ; check for version 2.0 or greater
0014 CDOCOO call getver
0017 FE14 cpi 20
0019 DO rnc ;return if > 2.0

error message and stop
001A C32300 jmp vererr ;version error
 ;

chkv22: ;check for version 2.2 or greater
001D CDOCOO call getver
0020 FE22 cpi 22h
0022 DO rnc ;return if >= 2.2

vererr:
;version error, report and terminate

0023 112EOO lxi d,vermsg
0026 OE09 mvi c,printf
0028 CDOOOO call ?bdos ;write message
002B C30000 jmp ?boot ;and reboot
002E ODOA4C6174vermsg: db cr,lf,'Later CP/M or MP/M Version Required$'
 ;

memptr: ;return pointer to base of free storage
0054 2AOOOO lhld ?begin
0057 C9 ret

55

CP/M RMAC ASSEM 0.4 #004 DIRECT CP/M CALLS FROM PL/I-80
 ;

memsiz: ;return size of free memory in bytes
0058 2AO100 lhld ?bdos+l ;base of bdos
005B EB xchg ;de = bdos
005C 2AOOOO lhld ?begin ;beginning of free storage
005F 7B mov a,e ;low(.bdos)
0060 95 sub l ;-low(begin)
0061 6F mov l,a ;back to 1
0062 7A mov a,d ;high(.bdos)
0063 9C sbb h
0064 67 mov h,a ;hl = mem size remaining
0065 C9 ret

;
memwds: ;return size of free memory in words

0066 CD5800 call memsiz ;hl = size in bytes
0069 7C mov a,h ;high(size)
006A B7 ora a ;cy = 0
0 06B 1F rar ;cy = ls bit
006C 67 mov h,a ;back to h
006D 7D mov a,l low(size)
006E 1F rar include ls bit
006F 6F mov l,a ;back to 1
0070 C9 ret ;with wds in hl

 ;
dfcbO: ;return address of default fcb 0

0071 210000 lxi h,?dfcbO
0074 C9 ret

;
dfcbl: ;return address of default fcb 1

0075 210000 lxi h,?dfcbl
0078 C9 ret

;
dbuff: ;return address of default buffer

0079 210000 lxi h,?dbuff
007C C9 ret

;
reboot: ;system reboot (#0)

007D C30000 jmp ?boot

56

CP/M RMAC ASSEM 0.4 #005 DIRECT CP/M CALLS FROM PL/I-80
 ;

rdcon: ;read console character (#l)
;return character value to stack

0080 OE01 mvi c,readc
0082 C38COO jmp chrin ;common code to read char

;
wrcon: ;write console character(#2)

;1->char(l)
0085 OE02 mvi c,writc ;console write function
0087 C39COO jmp chrout ;to write the character

;
rdrdr: ;read reader character (#3)

008A OE03 mvi c,rdrf ;reader function
chrin:

;common code for character input
008C CDOOOO call ?bdos ;value returned to A
008F El POP h ;return address
0090 F5 push psw ;character to stack
0091 33 inx sp ;delete flags
0092 3EO1 mvi a,l ;character length is 1
0094 E9 pchl ;back to calling routine
 ;

wrpun: ;write punch character (#4)
;1->char(l)

0095 OE04 mvi c,punf ;punch output function
0097 C39COO jmp chrout ;common code to write chr

;
wrlst: ;write list character (#5)

;1->char(l)
009A OE05 mvi cflistf ;list output function

chrout:
;common code to write character
;1-> character to write

009C CDOOOO call getpl ;output Char to register e
009F C30000 jmp ?bdos ;to write and return

;
coninp: ;perform console input, char returned in stack

0OA2 21AEOO lxi h,chrstr ;return address
0OA5 E5 push h ;to stack for return

57

CP/M RMAC ASSEM 0.4 #006 DIRECT CP/M CALLS FROM PL/1-80

0OA6 2AO100 lhld ?boot+l ;base of bios imp vector
0OA9 110600 lxi d,2*3 ;offset to imp conin
OOAC 19 dad d
OOAD E9 pchl ;return to chrstr
 ;

chrstr: ;create charaQter string, length 1
OOAE El POP h ;recall return address
OOAF F5 push psw ;save character
OOBO 33 inx sp ;delete psw
00B1 E9 pchl ;return to caller

 ;
conout: ;direct console output

;1->char(l)
0OB2 CDOOOO call getpl ;get parameter
0OB5 4B mov c,e ;character to c
0OB6 2AO100 lhld ?boot+l ;base of bios imp
0OB9 110900 lxi d,3*3 ;console output offset
OOBC 19 dad d ;hl = jmp conout
OOBD E9 pchl ;return through handler

 ;
rdstat: ;direct console status read

OOBE 21ECOO 1xi h,rdsret ;read status return
0OC1 E5 push h ;return to rdsret
0OC2 2AO100 lhld ?boot+l ;base of imp vector
0OC5 110300 lxi d,1*3 ;offset to jmp const
0OC8 19 dad d ;hl = jmp const
0OC9 E9 pchl

 ;
getio: ;qet io byte (#8)

OOCA OE07 mvi c,qetiof
OOCC C30000 jmp ?bdos ;value returned to A

;
setio: ;set i/o byte (#9)

;1->i/o byte
OOCF CDOOOO call getpl ;new i/o byte to E
OOD2 OE08 mvi c,setiof
OOD4 C30000 jmp ?bdos ;return through bdos

;
wrstr: ;write string (#10)

;1->addr(string)
OOD7 CD0600 call qetp2 ;get parameter value to DE

58

CP/M RMAC ASSEM 0.4 #007 DIRECT CP/M CALLS FROM PL/I-80

OODA OE09 mvi c,printf ;print string function
OODC C30000 imp ?bdos ;return through bdos

rdbuf: ;read console buffer (#10)
; 1->addr(buf f)

OODF CD0600 call getp2i ;DE = buff
OOE2 OEOA mvi c,rdconf ;read console function
OOE4 C30000 jmp ?bdos ;return through bdos

;
break: ;get console status (#11)

OOE7 OEOB mvi c,statf
OOE9 CDOOOO call ?bdos ;return through bdos

;
rdsret: ;return clean true value

OOEC B7 ora a ;zero?
OOED C8 rz ;return if so
OOEE 3EFF mvi a,Offh ;clean true value
OOFO C9 ret

;
vers: ;get version number (#12)

00K OEOC mvi c,versf
0OF3 C30000 jmp ?bdos ;return through bdos

;
reset: ;reset disk system (#13)

0OF6 OEOD mvi c,resetf
0OF8 C30000 jmp ?bdos

select: ;select disk (#14)
;1->fixed(7) drive number

OOFB CDOOOO call getpl ;disk number to E
OOFE OEOE mvi c,seldf
0100 C30000 jmp ?bdos ;return through bdos

open: ;open file (#15)
;1-> addr(fcb)

0103 CD0600 call getp2i ;fcb address to de
0106 OEOF mvi c,openf
0108 C30000 jmp ?bdos ;return through bdos

59

CP/M RMAC ASSEM 0.4 #008 DIRECT CP/M CALLS FROM PL/I-80

close: ;close file (#16)
;1-> addr(fcb)

010B CD0600 call getp2i ;.fcb to DE
010e OE10 mvi c,closef
0110 C30000 jmp ?bdos ;return through bdos
 ;

sear: ;search for file (#17)
;1-> addr(fcb)

0113 CD0600 call getp2i ;.fcb to DE
0116 OEll mvi c,serchf
0118 C30000 jmp ?bdos

searn: ;search for next (#18)
011B OE12 mvi c,serchn ;search next function
011D C30000 jmp ?bdos ;return through bdos

;
delete: ;delete file (#19)

;1-> addr(fcb)
0120 CD0600 call qetp2i ;.fcb to DE
0123 OE13 mvi c,deletf
0125 C30000 jmp ?bdos ;return through bdos

 ;
rdseq: ;read file sequential mode (#20)

;1-> addr(fcb)
0128 CD0600 call getp2i ;.fcb to DE
012B OE14 mvi c,readf
012D C30000 jmp ?bdos ;return through bdos

 ;
wrseq: ;write file sequential mode (#21)

;1-> addr(fcb)
0130 CD0600 call getp2i ;.fcb to DE
0133 OE15 mvi c,writf
0135 C30000 jmp ?bdos ;return through bdos

;
make: ;create file (#22)

60

CP/M RMAC ASSEM 0.4 #009 DIRECT CP/M CALLS FROM PL/I-80
;1-> addr(fcb)

0138 CD0600 call getp2i ;.fcb to DE
013B OE16 mvi c,makef
013D C30000 jmp ?bdos ;return through bdos
 ;

rename: ;rename file (#23)
; 1-> add r(fcb)

0140 CD0600 call getp2i ;.fcb to DE
0143 OE17 mvi c,renamf
0145 C30000 jmp ?bdos ;returnthrough bdos

 ;
loqvec: ;return login vector (#24)

0148 OE18 mvi c,loginf
014A C30000 jmp ?bdos ;returnthrough BDOS
 ;

curdsk: ;return current disk number (#25)
014D OE19 mvi c,cdiskf
014F C30000 jmp ?bdos ;return value in A
 ;

setdma: ;set DMA address (#26)
;1-> pointer (dma address)

0152 CD0600 call getp2 ;dma address to DE
0155 OElA mvi c,setdmf
0157 C30000 jmp ?bdos ;return through bdos

;
allvec: ;return address of allocation vector (#27)

015A OElB mvi c,getalf
015C C30000 jmp ?bdos ;return through bdos
 ;

wpdisk: ;write protect disk (#28)
015F CD1400 call chkv20 ;must be 2.0 or greater
0162 OElC mvi c,wrprof
0164 C30000 jmp ?bdos

;
rovec: ;return read/only vector (#29)

61

CP/M RMAC ASSEM 0.4 #010 DIRECT CP/M CALLS FROM PL/I-80

0167 CD1400 call chkv20 ;must be 2.0 or greater
016A OElD mvi c,getrof
016C C30000 jmp ?bdos ;value returned in HL

 ;
filatt: ;set file attributes (#30)

;1-> addr(fcb)
016F CD1400 call chkv20 ;must be 2.0 or greater
0172 CD0600 call qetp2i ;.fcbto DE
0175 OElE mvi c,setatf
0177 C30000 imp ?bdos

 ;
getdpb: ;get base of current disk parm block (#31)

017A CD1400 call chkv20 ;check for 2.0 or greater
017D OElF mvi c,getdpf
017F C30000 jmp ?bdos ;addr returned in HL

 ;
getusr: ;get user code to register A

0182 CD1400 call chkv20 ;check for 2.0 or greater
0185 1EFF mvi e,Offh ;to get user code
0187 OE20 mvi c,userf
0189 C30000 jmp ?bdos

 ;
setusr: ;set user code

018C CD1400 call chkv20 ;check for 2.0 or greater
018F CDOOOO call getpl ;code to E
0192 OE20 mvi c,userf
0194 C30000 jmp ?bdos

;
rdran: ;read random (#33)

;1-> addr(fcb)
0197 CD1400 call chkv20 ;checkfor 2.0 or greater
019A CD0600 call getp2i ;.fcb to DE
019D OE21 mvi c,rdranf
019F C30000 jmp ?bdos ;return through bdos

 ;
wrran: ;write random (#34)

;1-> addr(fcb)
01A2 CD1400 call chkv20 ;check for 2.0 or greater

62

CP/M RMAC ASSEM 0.4 #011 DIRECT CP/M CALLS FROM PL/I-80

01A5 CD0600 call qetp2i ;.fcb to DE
01A8 OE22 mvi c,wrranf
01AA C30000 jmp ?bdos ;return through bdos

;
filsiz: ;compute file size (#35)

01AD CD1400 call chkv20 ;must be 2.0 or greater
01BO CD0600 call getp2 ;.fcb to DE
01B3 OE23 mvi c,filszf
01B5 C30000 jmp ?bdos ;return through bdos

;
setrec: ;set random record position (#36)

01B8 CD1400 call chkv20 ;must be 2.0 or greater
01BB CD0600 call getp2 ;.fcb to DE
01BE OE24 mvi c,setrcf
01CO C30000 jmp ?bdos ;return through bdos

 ;
resdrv: ;reset drive function (#37)

;1->drive vector - bit(16)
01C3 CDlDOO call chkv22 ;must be 2.2 or greater
01C6 CDO600 call getp2 ;drive reset vector to DE
01C9 OE25 mvi c,rsdrvf
01CB C30000 imp ?bdos ;return through bdos

wrranz: ;write random, zero fill function
;1-> addr(fcb)

01CE CDlDOO call chkv22 ;must be 2.2 or greater
OID1 CD0600 call getp2i ;.fcb to DE
01D4 OE28 mvi c,wrrnzf
01D6 C30000 imp ?bdos
OID9 end

63

CP/M RMAC ASSEM 0.4 #012 DIRECT CP/M CALLS FROM PL/I-80

015A ALLVEC OOE7 BREAK 0019 CDISKF 0014 CHKV20 001D CHKV22
008C CHRIN 009C CHROUT OOAE CHRSTR 010B CLOSE 0010CLOSEF
0OA2 CONINP 0OB2 CONOUT OOOD CR 014D CURDSK 0079DBUFF
0120 DELETE 0013 DELETF 0071 DFCBO 0075 DFCB1 0006 DIOF
001A EOF 016F FILATT 01AD FILSIZ 0023 FILSZF 001B GETALF
017A GETDPB 001F GETDPF OOCAGETIO 0007 GETIOF 0000 GETP1
0006 GETP2 0006 GETP21 001D GETROF 0182 GETUSR OOOCGETVER
OOOA LF 0005 LISTF 0018 LOGINF 0148 LOGVEC 0138 MAKE
0016 MAKEF 0054 MEMPTR 0058 MEMSIZ 0066 MEMWDS 0103 OPEN
OOOF OPENF 0009 PRINTF 0004 PUNF OOOF RDBUF 0080 RDCON
OOOA RDCONF 0197 RDRAN 0021 RDRANF 008A RDRDR 0003 RDRF
0128 RDSEQ OOEC RDSRET OOBE RDSTAT 0001 READC 0014 READF
007D REBOOT 0140 RENAME 0017 RENAMF 01C3 RESDRV OOFI; RESET
OOOD RESETF 0167 ROVEC 0025 RSDRVF 0113 SEAR 011B SEARN
OOOE SELDF OOFB SELECT 0011 SERCHF 0012 SERCHN 001E SETATF
0152 S ETT)MA 001A SETOMF OOCF SETIO 0008 SETIOF 0024 SETRCF
01B8 SETREC 018C SETUSR OOOB STATF 0020 USERF 0023 VERERR
002E VERMSG 0OF1 VERS OOOC VERSF 015F WPDISK 0085 WRCON
0002 WRITC 0015 WRITF 009A WRLST 001C WRPROF 0095 WRPU
01A2 WRRAN 0022 WRRANF 01CE WRRANZ 0028 WRRNZF 0130 WRSEQ
OOD7 WRSTR 0000 ?BDOS 0000 ?BEGIN 0000 ?BOOT 0000 ?DBUFF
0000 ?DFCBO 0000 ?DFCB1

64

 APPENDIX B:

LISTING OF "DIOCALLS"
SHOWING THE BASIC CP/M DIRECT INTERFACE

65

PL/I-80 V1.0, COMPILATION OF: DIOCALLS

L: List Source Program

%include 'diomod.dcl';
NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: DIOCALLS

1 a 0000 diotst:
2 a 0006 proc options(main);
3 a 0006 /* external CP/M 1/0 entry points
4 a 0006 /* (note: each source line begins with tab chars)
5+c 0006 dcl
6+c 0006 memptr entry returns (ptr),

 7+ c 0006 memsiz entry returns (f ixed (15)
 8+ c 0006 memwds entry returns (fixed(15)),
 9+ c0006 dfcbO entry returns (ptr),
10+c0006 dfcbl entry returns (ptr),
 ll+ c0006 dbuff entry returns (ptr),
12+ c 0006 reboot entry,
13+c 0006 rdcon entry returns (char(l)),
14+c 0006 wrcon entry (char(l)),
15+c 0006 rdrdr entry returns (char(l)),
16+c 0006 wrpun entry (char(l)),
17+c 0006 wrlst entry (char(l)),
18+c 0006 coninp entry returns (char(l)),
19+c 0006 conout entry (char(l)),
20+c 0006 rdstat entry returns (bit(l)),
21+c 0006 getio entry returns (bit(8)),
22+c 0006 setio entry (bit(8)),
23+c 0006 wrstr entry (ptr),
24+c 0006 rdbuf entry (ptr),
25+c 0006 break entry returns (bit(l)),
26+c 0006 vers entry returns (bit(16)),
27+c 0006 reset entry,
28+c 0006 select entry (fixed(7)),
29+c 0006 open entry (ptr) returns (fixed(7)),
30+c 0006 close entry (ptr) returns (fixed(7)),
31+c 0006 sear entry (ptr) returns (fixed(7)),
32+c 0006 searn entry returns (fixed(7)),
33+c 0006 delete entry (ptr),
34+c 0006 rdseq entry (ptr) returns (fixed(7)),
35+c 0006 wrseq entry (ptr) returns (fixed(7)),
36+c 0006 make entry (ptr) returns (fixed(7)),
37+c 0006 rename entry (ptr),
38+c 0006 loqvec entry returns (bit(16)),
39+c 0006 curdsk entry returns (fixed(7)),
40+c 0006 setdma entry (ptr),
41+c 0006 allvec entry returns (ptr),
42+c 0006 wpdisk entry,
43+c 0006 rovec entry returns (bit(16)),
44+c 0006 filatt entry (ptr),
45+c 0006 getdpb entry returns (ptr),

46+c 0006 getusr entry returns (fixed(7)),

66

47+c 0006 setusr entry (fixed(7)),
48+c 0006 rdran entry (ptr) returns (fixed(7)),
49+c 0006 wrran entry (ptr) returns (fixed(7)),
50+c 0006 filsiz entry (ptr),
51+c 0006 setrec entry (ptr),
52+c 0006 resdrv entry (bit(16)),
53+c 0006 wrranz entry (ptr) returns (fixed(7));
54 c 0006 dcl
55 c 0006 c char(l),
56 c 0006 v char(254) var,
57 c 0006 i fixed;
58 c 0006
59 c 0006 /*
60 c 0006
61 c 0006
62 c 0006 Fixed Location Tests:
63 c 0006 MEMPTR, MEMSIZ, MEMWDS,
64 c 0006 DFCBO, DFCB1, DBUFF
65 c 0006 */
66 c 0006
67 c 0006 dcl
68 c 0006 memptrv ptr,
69 c 0006 memsizv fixed,
70 c 0006 (dfcb0v, dfcblv, dbuf fv) ptr,
71 c 0006 command char(127) var based (dbuffv),
72 c 0006 1fcbO based(dfcb0v),
73 c 0006 2 drive fixed(7),
74 c 0006 2 name char(8),
75 c 0006 2 type char(3),
76 c 0006 2 extnt fixed(7),
77 c 0006 2 space (19) bit(8),
78 c 0006 2 cr fixed(7),
79 c 0006 memory (13:0) based(memptrv)bit(8);
80 c 0006 memptrv = memptro;
81 c 000C memsizv = memsizo;
82 c 0012 dfcbOv = dfcb0();
83 c 0018 dfcblv = dfcbl();
84 c 001E dbuffv = dbuffo;
85 c 0024 put edit ('Command Tail: ',command) (a);
86 c 004A put edit ('First Default File: ‘,
87 c 008D fcbO.name,'.',fcbO.type) (skip,4a);
88 c 008D put edit ('dfcbO ',unspec(dfcb0v),
89 c 0137 'dfcbl ',unspec(dfcblv),
90 c 0137 'dbuff ',unspec(dbuffv),
91 c 0137 amemptr',unspec(memptrv),
92 c 0137 Imemsizl,unspec(memsizv),
93 c 0137 'memwds' memwds())
94 c 0137 (5 (skip,a (7) b4) skip,a (7)f (6)
95 c 0137 put skip list('Clearinq Memory');
96 c 0153 /* sample loop to clear mem */

 97 c 0153 do i = 0 repeat(i+l) while (i-=memsizv-1);
 98 c 016A memory (i) = '001b4;
 99 c 017F end;

100 c 017F
101 c 017F
102 c 017F /*
103 c 017F

 104 c 017F REBOOT Test
 105 c 017F

67

106 c 017F
107 c 017F put skip list ('Reboot? (Y/N)');
108 c 019B get list (c);
109 c 01B5 if translate(c,1Y1,1y') = 'Y' then
110 c 01DD call rebooto;
111 c 01E0
112 c 01E0
113 c OlEO
114 c 01E0
115 c 01E0 RDCON, WRCON Test
116 c 01E0
117 c 01E0
118 c 01E0 put list(Type Input, End with
119 c 01F7 v - M-j';
120 c 0204 do while (substr(v,length(v))
121 c 0220 v = v 11 rdcono;
122 c 022E end;
123 c 022E put skip list('You Typed:');
124 c 024A do i = 1 to lenqth(v);
125 c 0266 call wrcon(substr(v,i,l));
126 c 028E end;
127 c 028E
128 c 028E
129 c 028E
130 c 028E
131 c 02SE RDRDR and WRPUN Test
132 c 028E
133 c 02SE
134 c 028E put skip list('Reader to Punch Test?(Y/N)');
135 c 02AA get list (c) ;
136 c 02C4 if translate(c,'Y','y') = 'Y' then
137 c 02EC do;
138 c 02EC put skip list('Copyinq RDR to PUN until ctl-z');
139 c 0308 C = I I ;
140 c 0314 do while (c -= '-z');
141 c 0323 c = rdrdro;
142 c 032E if c -= '-z' then
143 c 033D call wrpun(c)
144 c 0346 end;
145 c 0346 end;
146 c 0346
147 c 0346
148 c 0346
149 c 0346
150 c 0346 WRLST Test
151 c 0346
152 c 0346
153 c 0346 put list('List Output Test?(Y/N)');
154 c 035D qet list(c);
155 c 0377 if translate(c,'Y','y') = 'Y' then
156 c 039F do i = 1 to lenqth(v);
157 c 03BB call wrlst(substr(v,i,l));
158 c 03E3 end;
159 c 03E3
160 c 03E3
161 c 03E"
162 c 03E3
163 c 03E3 Direct 1/0, CONOUT, CONINP
164 c 03E3
165 c 03E3

62

68

166 c 03E3 put list
167 c 03FA ('Direct 1/0, Type Line, End with Line Feed');
168 c 03FA c = ‘ ‘;
169 c 0406 do while (c ^= ‘^j’);
170 c 0415 call conout(c);
171 c 041B c = coninp();
172 c 0429 end;
173 c 0429
174 c 0429
175 c 0429 /*
176 c 0429
177 c 0429 Direct 1/0, Console Status
178 c 0429 RDSTAT
179 c 0429 */
180 c 0429
181 c 0429 put skip list(‘Status Test, Type Character');
182 c 0445 do while (^rdstat());
183 c 044F end;
184 c 044F /* clear the character */
185 c 044F c = coninp();
186 c 045A
187 c 045A
188 c 045A /*
189 c 045A
190 c 045A GETIO, SETIO Iobyte
191 c 045A
192 c 045A */
193 c 045A dcl
194 c 045A iobyte bit,(8);
195 c 045A iobyte = getio();
196 c 0460 put edit ('IObyte is ',iobyte,
197 c 0493 ', New Value: ') (skip,a,b4,a);
198 c 0493 qet edit (iobyte) (b4(2));
199 c 04AF call setio(iobyte);
200 c 04B5
201 c 04B5
202 c 04B5 /*
203 c 04B5
204 c 04B5 Buffered Write, WRSTR Test
205 c 0435 */
206 c 04B5
207 c 04B5 put list('Buffered Output Test:');
208 c 04CC /* "v" was previously filled by RDCON */
209 c 04CC call wrstr(addr(v));
210 c 04D8
211 c 04D8
212 c 04D8 /*
213 c 04D8
214 c 04D8 Buffered Read RDBUF Test
215 c 04D8 */
216 c 04D8
217 c 04D8 dcl
218 c 04D8 1 inbuff static,
219 c 04D8 2 maxsize bit(8) init('80'b4),
220 c 04D8 2 inchars char(127) var;
221 c 04D8 put skip list(‘Line Input, Type Line, End With Return');
222 c 04F4 put skip;
223 c 0505 call rdbuf(addr(inbuff));
224 c 0511 put skip list('You Typed: ‘,inchars);
225 c 0536

69

226 c 0536 /*
227 c 0536
228 c 0536 Console BREAK Test
229 c 0536 */
230 c 0536
231 c 0536
232 c 0536 put skip list(‘Console Break Test, Type Character');
233 c 0552 do while(^break());
234 c 055C end;
235 c 055C c = rdcon();
236 c 0567
237 c 0567
238 c 0567 /*
239 c 0567
240 c 0567 Version Number VERS Test
241 c 0567 */
242 c 0567
243 c 0567 dcl
244 c 0567 version bit(16);
245 c 0567 version = vers();
246 c 056D if substr(version,1,8) = ‘00’b4 then
247 c 0576 put skip list(‘Cp/M’); else
248 c 0595 put skip list('MP/M’);
249 c 05B1 put edit(' Version ',substr(version,9,4),
250 c 05F5 ‘.',substr(version,13,4)) (a,b4,a,b4);
251 c 05F5
252 c 05F5
253 c 05F5 /*
254 c 05F5
255 c 05F5 Disk System RESET Test
256 c 0 5F5 */
257 c 05F5
258 c 05F5 put skip list('Resetting Disk System');
259 c 0611 call reset();
260 c 0614
261 c 0614 /*
262 c 0614
263 c 0614
264 c 0614 Disk SELECT Test
265 c 06l 4 */
266 c 0614
267 c 0614 put skip list('Select Disk # ‘);
268 c 0630 get list(i);
269 c 0648 call select(i);
270 c 0654
271 c 0654 /*
272 c 0654
273 c 0654 Note: The OPEN, CLOSE, SEAR,
274 c 0654 SEARN, DELETE, RDSEQ,
275 c 0654 WRSEQ, MAKE, and RENAME
276 c 0654 functions are tested in the
277 c 0654 DIOCOPY program
278 c 0654
279 c 0654 */
280 c 0654
281 c 0654 /*
282 c 0654
283 c 0654 LOGVFC and CURDSK
284 c 0654
285 c 0654 */

70

286 c 0654 put skip list ('Login Vector',
287 c 0695 loqvec(),'Current Disk',
288 c 0695 curdsk());
289 c 0695
290 c 0695 /*
291 c 0695
292 c 0695 See DIOCOPY for SETDMA Function
293 c 0695
294 c 0695 */
295 c 0695
296 c 0695
297 c 0695 /*
298 c 0695 Allocate Vector ALLVEC Test
299 c 0695
300 c 0695 */
301 c 0695 dcl
302 c 0695 alloc (0:30) bit(8)
303 c 0695 based (allvec()),
304 c 0695 allvecp ptr;
305 c 0695 allvecp = allvec();
306 c 069B put edit('Alloc Vector at ‘,
307 c 0700 unspec(allvecp),':’,
308 c 0700 (alloc(i) do i=O to 30))
309 c 0700 (skip,a,b4,a,254(skip,4(b,x(l))));
310 c 0700
311 c 0700 /*
312 c 0700
313 c 0700 Note: the followinq functions
314 c 0700 apply to version 2.0 or newer.
315 c 0700
316 c 0700 */
317 c 0700
318 c 0700 /*
319 c 0700
320 c 0700 WPDISK Test
321 c 0700 */
322 c 0700
323 c 0700 put skip list('Write Protect Disk?(Y/N)');
324 c 071C get list(c);
325 c 0736 if translate(c,'Y','y') = 'Y' then
326 c 075E call wpdisk();
327 c 0761
328 c 0761
329 c 0761 /*
330 c 0761 ROVEC Test
331 c 0761 */
332 c 0761
333 c 0761 put skip list('Read/Only Vector is',rovec());
334 c 0788
335 c 0788
336 c 0788 /*
337 c 0788 Disk Parameter Block Decoding
338 c 0788 Using GETDPB
339 c 0788 */
340 c 0788
341 c 0788 dcl
342 c 0788 dpbp ptr,
343 c 0788 1 dpb based (dpbp),
344 c 0788 2 spt fixed(15),
345 c 0788 2 bsh fixed(7),

71

346 c 0788 2 blm bit(8) ,
347 c 0788 2 exm hit(8) ,
348 c 0788 2 dsm bit(16),
349 c 0788 2 drm bit(16),
350 c 0788 2 al0 bit(8),
351 c 0788 2 all bit(B),
352 c 0788 2 cks bit(16),
353 c 0788 2 off fixed(7);
354 c 0788 dpbp = qetdpbo;
355 c 078E put edit('Disk Parameter Block:',
356 c 08C6 'spt',spt,'bsh',bsh,'blm',blm,
357 c 08C6 'exm’,exm,'dsm’,dsm,'drm’,drm,
358 c 08C6 1al0',al0,’all',all,’cks’,cks,
359 c 08C6 ‘off"off)
360 c 08C6 (skip,a,2(skip,a(4) f (6)
361 c 08C6 4(skip,a(4),b4),
362 c 08C6 skip,2(a(4),b,x(l)),
363 c 08C6 skip,a(4),b4,
364 c 08C6 skip,a(4),f(6));
365 c 08C6
366 c 08C6 /*
367 c 08C6
368 c 08C6 Test Get/Set user Code
369 c 08C6 GETUSR, SETUSR
370 c 08C6 */
371 c 08C6
372 c 08C6 put skip list
373 c 08FC ('User is',qetusr(),', New User:');
374 c 08FC get list(i);
375 c 0914 call setusr(i);
376 c 0920
377 c 0920 /*
378 c 0920
379 c 0920 FILSIZ, SETREC,
380 c 0920 RDRAN, 14RRA.N, WRRANZ are
381 c 0920 tested in DIORAND
382 c 0920
383 c 0920 */
384 c 0920
385 c 0920 /*
386 c 0920
387 c 0920 Test Drive Reset RESDRV
388 c 0920 (version 2.2 or newer)
389 c 0920
390 c 0920 */
391 c 0920 dcl
392 c 0920 drvect bit(16);
393 c 0920 put list('Drive Reset Vector:');
394 c 0937 qet list(drvect);
395 c 094F call resdrv(drvect);
396 c 0955
397 c 0955
398 c 0955
399 c 0955
400 c 0955
401 a 0955 end diotst;

CODE SIZE = 0958
DATA AREA = 04BA

72

 APPENDIX C:

LISTING OF "DIOCOPY"
SHOWING DIRECT CP/M FILE 1/0 OPERATIONS

73

PL/I-80 V1.0, COMPILATION OF: DIOCOPY

L: List Source Program

%include 'diomod.dcl';
%include ‘fcb.dcl';
%include ‘fcb.dcl';
%include 'fcb.dcl';
%include 'fcb.dcl';
 NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: DIOCOPY

1 a 0000 diocopy:
2 a 0006 proc options(main);
3 a 0006 /* file to file copy program */
4 a 0006 /* (all source lines begin with tabs) */
5 a 0006
6 c 0006 %replace

 7 c 0006 bufwds by 64, /* words per buffer */
 8 c 0006 quest by 63, /* ASCII */
 9 c 0006 true by '1'b,
 10 c 0006 false by '0'b;
 11 c 0006
 12+c 0006 dcl
 13+c 0006 memptr entry returns (ptr),
14+c 0006 memsiz entry returns (fixed(15)),
15+c 0006 memwds entry returns (fixed(15)),
16+c 0006 dfcbo entry returns (ptr),
17+c 0006 dfcbl entry returns (ptr),
18+c 0006 dbuff entry returns (ptr),
19+c 0006 reboot entry,
20+c 0006 rdcon entry returns (char(l)),
21+c 0006 wrcon entry (char(l)),
22+c 0006 rdrdr entry returns (char(l)),
23+c 0006 wrpun entry (char(l)),
24+c 0006 wrlst entry (char(l)),
25+c 0006 coninp entry returns (char(l)),
26+c 0006 conout entry (char(l)),
27+c 0006 rdstat entry returns (bit(l)),
28+c 0006 getio entry returns (bit(8)),
29+c 0006 setio entry (bit(8)),
30+c 0006 wrstr entry (ptr),
31+c 0006 rdbuf entry (ptr),
32+c 0006 break entry returns (bit(l)),
33+c 0006 vers entry returns (bit(16)),
34+c 0006 reset entry,
35+c 0006 select entry (fixed(7)),
36+c 0006 open entry (ptr) returns (fixed(7)),
37+c 0006 close entry (ptr) returns (fixed(7)),
38+c 0006 sear entry (ptr) returns (fixed(7)),
39+c 0006 searn entry returns (fixed(7)),
40+c 0006 delete entry (ptr),
41+c 0006 rdseq entry (ptr) returns (fixed(7)),

74

42+c 0006 wrseq entry (ptr) returns (fixed(7)),
43+c 0006 make entry (ptr) returns (fixed(7)),
44+c 0006 rename entry (ptr) ,
45+c 0006 loqvec entry returns (bit(16)),
46+c 0006 curdsk entry returns (fixed(7)),
47+c 0006 setdma entry (ptr),
48+c 0006 allvec entry returns (ptr),
49+c 0006 wpdisk entry,
50+c 0006 rovec entry returns (bit(16)),
51+c 0006 filatt entry (ptr),
52+c 0006 qetdpb entry returns (ptr),
53+c 0006 qetusr entry returns (fixed(7)),
54+c 0006 setusr entry (fixed(7)),
55+C 0006 rdran entry (ptr) returns (fixed(7)),
56+c 0006 wrran entry (ptr) returns (fixed(7)),
57+c 0006 filsiz entry (ptr),
58+c 0006 setrec entry (ptr),
59+c 0006 resdrv entry (bit(lr))
60+c 0006 wrranz entry (ptr) returns (fixed(7));
61 c 0006
62 c 0006 dcl
63 c 0006 1 destfile,
64+c 0006 2namel,
65+c 0006 3 drive fixed(7), /*drive number */
66+c 0006 3 fname char(8), /* file name */
67+c 0006 3 ftype char(3), /* file type */
68+c 0006 3 fext fixed(7), /*file extent */
69+c 0006 3 space (3) bit(8),/* filler */
70+c 0006 2 name2, /*used in rename */
71+c 0006 3 drive2 fixed(7),
72+c 0006 3 fname2 char(B),
73+c 0006 3 ftype2 char(3),
74+c 0006 3 f ext2 fixed(7)
75+c 0006 3 space2 (3) bit(4)
76+c 0006 2 crec f ixed (7) , /* current record */
77+c 0006 2 rrec fixed(15), /*random record */
78+c 0006 2 rovf fixed(7); /* random rec overflow */
79 c 0006
80 c 0006 dcl
81 c 0006 dfcbop ptr,
82 c 0006 1sourcefile based(dfcb0p),
83+c 0006 2namel,
84+c 0006 3 drive fixed(7), /*drive number */
85+c 0006 3 fname char(8), /* file name */
86+c 0006 3 ftype char(3), /* file type */
87+c 0006 3 fext fixed(7), /* file extent */
88+c 0006 3 space (3) bit(8) /* filler */
89+c 0006 2 name2, /*used in rename */
90+c 0006 3 drive2 fixed(7),
91+c 0006 3 fname2 char(8),
92+ c 0006 3 ftype2 char(3) ,
93+c 0006 3 fext2 fixed(7)
94+c 0006 3 space2 (3) bit(4),
95+c 0006 2 crec fixed(7), /* current record */
96+c 0006 2 rrec fixed(15), /*random record */
97+c 0006 2 rovf fixed(7); /* random rec overflow */
98 c 0006
99 c 0006 dcl

100 c 0006 1 dfcblfile based(dfcbl()),
101+c 0006 2 namel,

75

102+c 0006 3 drive fixed (7) /* drive number */
103+c 0006 3 fname char(8), /* file name */
104+c 0006 3 ftype char(3), /* file type */
105+c 0006 3 fext fixed(7), /* file extent */
106+c 0006 3 space (3) bit(8),/* /* filler */
107+c 0006 2 name2, /* used in rename */
108+c 0006 3 drive2 fixed(7),
109+c 0006 3 fname2 char(8),
110+c 0006 3 ftype2 char(3),
111+c 0006 3 fext2 fixed(7),
112+c 0006 3 space2 (3) bit(8),
113+c 0006 2 crec fixed(7), /* current record */
114+c 0006 2 rrec fixed(15), /*random record */
115+c 0006 2 rovf fixed(7); /* random rec overflow */
116 c 0006
117 c 0006 dcl
118 c 0006 1 renfile,
119+c 0006 2 namel,
120+c 0006 3 drive fixed(7), /*drive number */
121+c 0006 3 fname char(B), /* file name */
122+c 0006 3 ftype char(3), /* file type */
123+c 0006 3 fext fixed(7), /*file extent */
124+c 0006 3space (3) bit(8),/* filler */
125+c 0006 2 name2, /*used in rename */
126+c 0006 3 drive2 fixed(7),
127+c 0006 3 fname2 char(8),
128+c 0006 3 ftype2 char(3),
129+c 0006 3 fext2 fixed(7),
130+c 0006 3 space2 (3) bit(8),
131+c 0006 2 crec fixed(7), /* current record */
132+c 0006 2 rrec fixed(15), /*random record */
133+c 0006 2 rovf fixed(7); /*random rec overflow */
134 c 0006
135 c 0006 dcl
136 c 0006 answer char(l),
137 c 0006 extcnt fixed(7);
138 c 0006
139 c 0006 dcl
140 c 0006 /* buffer management */
141 c 0006 eofile bit(8),
142 c 0006 i fixed(15),
143 c 0006 m fixed(15),
144 c 0006 nbuffs fixed(15),
145 c 0006 memory (0:0) bit(16) based(memptro);
146 c 0006
147 c 0006 /*compute number of buffs, 64 words each */
148 c 0006 nbuffs = divide (memwds (), bufwds, 15);
149 c 0017 if nbuffs = 0 then
150 c 0020 do;
151 c 0020 put skip list('No Buffer Space');
152 c 003C call rebooto;
153 c 003F end;
154 c 003F
155 c 003F /* initialize fcb's */
156 c 003F dfcb0p = dfcb0();
157 c 0045 destfile = dfcblfile;
158 c 0054
159 c 0054 /* copy fcb to rename file, count extents */
160 c 0054 renfile = destfile;
161 c 0060 /* search all extents by inserting ‘?’ */

76

162 c 0060 renfile.fext = quest;
163 c 0065 if sear(addr(renfile)) ^= -1 then
164 c 0076 do;
165 c 0076 extcnt = 1;
166 c 007B do while(searno ^= -1);
167 c 0083 extcnt = extcnt + 1;
168 c 008A end;
169 c 008A put edit
170 c 00C1 (‘OK to Delete ‘,extcnt, ‘ Extent(s) ?(Y/N)’);
171 c 00C1 (skip,a,f (3), a);
172 c 00Cl get list(answer);
173 c 00DB if ^ (answer = 'Y' | answer = ‘y') then
174 c 00FF call reboot();
175 c 0102 end;
176 c 0102
177 c 0102 /* destination file will be deleted later */
178 c 0102 destfile.ftype = '$$$';
179 c 010E /* delete any existing x.$$$ file */
180 c 010E call delete(addr(destfile));
181 c 011A
182 c 011A /* open the source file, if possible */
183 c 011A if open(addr(sourcefile)) = -1 then
184 c 012B do;
185 c 012B put skip list('No Source File');
186 c 0147 call reboot();
187 c 014A end;
188 c 014A
189 c 014A /* source file opened, create $$$ file */
190 c 014A destfile.fext = 0;
191 c 014F destfile.crec = 0 ;
192 c 0154 if make(addr(destfile)) = -1 then
193 c 0165 do;
194 c 0165 put skip list('No Directory Space');
195 c 0181 call reboot();
196 c 0184 end;
197 c 0184
198 c 0184 /* $$$ temp file created, now copy from source */
199 c 0184 eofile = false;
200 c 0189 do while (^eofile);
201 c 0190 m = 0;
202 c 0196 /* fill buffers */
203 c 0196 do i = 0 relDeat (i+l) while (i<nbuffs);
204 c 0lA6 call setdma(addr(memory(m)));
205 c 0189 m = m + bufwds;
206 c 0lC3 if rdseq(addr(sourcefile)) ^= 0 then
207 c 01D4 do;
208 c 01D4 eofile = true;
209 c 01D9 /* truncate buffer */
210 c 01D9 nbuffs = i;
211 c 01E9 end;
212 c 01E9 end;
213 c 01E9 M = 0;
214 c 01EF /* write buffers */
215 c 01EF do i = 0 to nbuffs-1;
216 c 0206 call setdma(addr(memory(m)));
217 c 0219 m = m + bufwds;
218 c 0223 if wrseq(addr(destfile)) ^= 0 then
219 c 0234 do;
220 c 0234 put skip list('Disk Full');
221 c 0250 call reboot();

77

222 c 0260 end;
223 c 0260 end;
224 c 0260 end;
225 c 0260
226 c 0260 /*close destination file and rename */
227 c 0260 if close(addr(destfile)) = -1 then
228 c 0271 do;
229 c 0271 put skip list('Disk R/O');
230 c 028D call reboot();
231 c 0290 end;
232 c 0290
233 c 0290 /* destination file closed, erase old file */
234 c 0290 call delete(addr(renfile));
235 c 029C
236 c 029C /* now rename $$$ file to old file name */
237 c 029C destfile.name2 = renfile.namel;
238 c 02AB call rename (add r(destfile)
239 c 02B7 call reboot();
240 a 02BA end diocopy;

CODE SIZF = 02BD
DATA AREA = 00EF

78

 APPENDIX D:

LISTING OF "DIORAND"
SHOWING EXTENDED RANDOM ACCESS CALLS

79

PL/I-80 V1.0, COMPILATION OF: DIORAND

L: List Source Program

%include 'diomod.dcl'; %include 'fcb.dcl'; NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80,Vl.O, COMPILATION OF: DIORAND

1 a 0000 diorand:
2 a 0006 proc options(main);
3 a 0006 /* random access tests for 2.0 and 2.2 */
4 a 0006
5+c 0006 dcl
6+c 0006 memptr entry returns (ptr),

 7+c 0006 memsiz entry returns (fixed(15)),
 8+c 0006 memwds entry returns (fixed(15)),
 9+c 0006 dfcb0 entry returns (ptr),

 10+c 0006 dfcbl entry returns (pt r) ,
11+c 0006 dbuff entry returns (ptr),
12+c 0006 reboot entry,
13+c 0006 rdcon entry returns (char(l)),
14+c 0006 wrcon entry (char(l)),
15+c 0006 rdrdr entry returns (char(l)
16+c 0006 wrpun entry (char(l)),
17+c 0006 wrlst entry (char(l)),
18+c 0006 coninp entry returns (char(l)),
19+c 0006 conout entry (char(l)),
20+c 0006 rdstat entry returns (bit(l)),
21+c 0006 getio entry returns (bit(8)),
22+c 0006 setio entry (bit(8)),
23+c 0006 wrstr entry (ptr),
24+c 0006 rdbuf entry (ptr),
25+c 0006 break entry returns (bit(l)),
26+c 0006 vers entry returns (bit(16)),
27+c 0006 reset entry,
28+c 0006 select entry (fixed(7)),
29+c 0006 open entry (ptr) returns (fixed(7)),
30+c 0006 close entry (ptr) returns (fixed(7)),
31+c 0006 sear entry (ptr) returns (fixed(7)),
32+c 0006 searn entry returns (fixed(7)),
33+c 0006 delete entry (ptr),
34+c 0006 rdseq entry (ptr) returns (fixed(7)),
35+c 0006 wrseq entry (ptr) returns (fixed(7)),
36+c 0006 make entry (ptr) returns (fixed(7)),
37+c 0006 rename entry (ptr),
38+c 0006 logvec entry returns (bit(16)),
39+c 0006 curdsk entry returns (fixed(7)),
40+c 0006 setdma entry (ptr),
41+c 0006 allvec entry returns (ptr),
42+c 0006 wpdisk entry,
43+c 0006 rovec entry returns (bit(16)),,
44+c 0006 filatt entry (ptr),

80

45+c 0006 getdpb entry returns (ptr),
46+c 0006 qetusr entry returns (fixed(7)),
47+c 0006 setusr entry (fixed(7)),
48+c 0006 rdran entry (ptr) returns (fixed(7)),
49+c 0006 wrran entry (ptr) returns (fixed(7)),
50+c 0006 filsiz entry (ptr),
51+c 0006 setrec entry (ptr),
52+c 0006 resdrv entry (bit(16)
53+c 0006 wrranz entry (ptr) returns (fixed(7));
54 c 0006
55 c 0006 dcl
56 c 0006 1 database,
57+c 0006 2 namel,
58+c 0006 3 drive fixed(7), /*drive number */
59+c 0006 3 fname char(8), /* file name */
60+c 0006 3 ftype char(3), /* file type */
61+c 0006 3 fext fixed(7), /*file extent */
62+c 0006 3 space (3) bit(8), /* filler */
63+c 0006 2 name2, /*used in rename */
64+c 0006 3 drive2 fixed(7),
65+c 0006 3 fname2 char(8),
66+c 0006 3 ftype2 char(3),
67+c 0006 3 fext2 fixed(7),
68+c 0006 3 space2 (3) bit(B)
69+c 0006 2 crec fixed(7), /* current record */
70+c 0006 2 rrec fixed(15), /*random record */
71+c 0006 2 rovf fixed(7); /* random rec overflow */
72 c 0006
73 c 0006 dcl
74 c 0006 lower char(26) static initial
75 c 0006 ('abcdefghijklmnopqrstuvwxyz’),
76 c 0006 upper char(26) static initial
77 c 0006 ('ABCDEFGHIJKLMNOPQRSTUVWXYZ’);
78 c 0006
79 c 0006 dcl
80 c 0006 /* simple variables */
81 c 0006 i fixed,
82 c 0006 fn char(20),
83 c 0006 c char(l),
84 c 0006 code fixed(7),
85 c 0006 mode fixed(2),
86 c 0006 zerofill bit(l),
87 c 0006 version bit(16);
88 c 0006
89 c 0006 dcl
90 c 0006 /* overlays on default buffer */
91 c 0006 bitbuf (128) bit(8) based(dbuffo),
92 c 0006 buffer char(127) var based(dbuffo);
93 c 0006
94 c 0006 put skip list('Random Access Test');
95 c 0022 /* check version number for 2.0 */
96 c 0022 version = vers();
97 c 0028 if substr(version,9,8) < '20'b4 then

 98 c 0031 do;
 99 c 0031 put skip list('You Need Version 2’);
 100 c 004D stop;
 101 c 0050 end;
 102 c 0050 putskip list(Zero Record Fill?');
 103 c 006C qet list(c);
 104 c 0086 zerofill = (c = 'Y' ! c = 'y') &

81

105 c 00B5 substr(version,9,8) >= '22'b4;
106 c 00B5
107 c 00B5 /* read and process file name */
108 c 00B5 put skip list('Data Base Name: ‘);
109 c 00D1 get list(fn);
110 c 00EB fn = translate(fn,upper,lower);
111 c 0110
112 c 0110 /* process optional drive prefix */
113 c 0110 i = index(fn,':');
114 c 0120 if i = 0 then
115 c 0129 drive = 0;
116 c 0131 else
117 c 0131 if i = 2 then
118 c 013B do;
119 c 013B /* convert character to drive code */
120 c 013B drive = index(upper,substr(fn,l,l));
121 c 0153 if drive = 0 ! drive > 16 then
122 c 016C do;
123 c 016C put skip list('Bad Drive Name');
124 c 0188 stop;
125 c 018B end;
126 c 018B fn = substr(fn,i+l);
127 c 01A4 end;
128 c 01A4
129 c 01A4 /* get file name and optional type */
130 c 01A4 i index(fn,'.');
131 c 01B4 if i = 0 then
132 c 01BD do;
133 c 01BD /* no file type specified, use DAT */
134 c 01BD fname = fn;
135 c 01CA ftype = 'DAT’;
136 c 01D9 end;
137 c 01D9 else
138 c 01D9 do;
139 c 01D9 fname = substr(fn,l,i-1);
140 c 01F5 ftype = substr(fn,i+l);
141 c, 020F end;
142 c 020F
143 c 020F /* clear the extent field */
144 c 020F fext = 0;
145 c 0214
146 c 0214 if open(addr(database)) = -1 then
147 c 0225 do;
148 c 0225 put skip list('Creatinq New Database');
149 c 0241 if make(addr(database)) = -1 then
150 c 0252 do;
151 c 0252 put skip list('No Directory Space');
152 c 026E stop;
153 c 0274 end;
154 c 0274 end;
155 c 0274 else
156 c 0274 do;
157 c 0274 call filsiz(addr(database));
158 c 0280 put skip list('File Size:',rrec,' Records');
159 c 02B2 end;
160 c 02B2
161 c 02B2 /* main processing loop */
162 c 02B2 do while('1'b) ;
163 c 0282 call setrec(addr(database));
164 c 02BE out skip list('Current Record',rrec);

82

165 c 02E5 put skip list('Read(O),Write(l),Quit(2)? ‘);
166 c 0301 get list(mode);
167 c 031A if mode < 2 then
168 c 0322 do;
169 c 0322 put skip list(‘Record Number? ‘);
170 c 033E get list(rrec);
171 c 035B rovf = 0;
172 c 0360 end;
173 c 0360 if mode = 0 then
174 c 0367 do;
175 c 0367 code = rdran(addr(database));
176 c 0376 if code = 0 then
177 c 037D do;
178 c 037D if bitbuf(l) = '00'b4 then
179 c 0386 put skip list('Zero Record');
180 c 03A5 else
181 c 03A5 put skip list(buffer);
182 c 03C2 end;
183 c 03C2 else
184 c 03C2 put skip list(‘Return Code',code);
185 c 03F0 end;
186 c 03F0 else
187 c 03F0 if mode = 1 then
188 c 03F7 do;
189 c 03F7 put skip list('Data: ‘);
190 c 0413 get list(buffer);
191 c 042F if zerofill then
192 c 0436 code = wrranz(addr(database));
193 c 0448 else
194 c 0448 code = wrran (addr(database));
195 c 0457 if code ^= 0 then
196 c 045E put skip list('Return Code’,code);
197 c 048C end;
198 c 048C else
199 c 048C if mode = 2 then
200 c 0494 do;
201 c 0494 if close(addr(database)) = -1 then
202 c 04A5 put skip list('Read/only');
203 c 04C1 stop;
204 c 04C7 end;
205 c 04C7 end;
206 a 04C7 end diorand;

CODE SIZE = 04C7
DATN AREA = 0183

83

APPENDIX E

 OVERLAYS AND PILE LOCATION CONTROLS

This appendix describes several additional features incorporated into
LINK-80 and LIB-80 in release versions later than 1.0, including extensions
to process run-time overlays, and controls for location of source,
intermediate, and destination files. Use of the automatic PL/I-80 library
search "request item" is included, along with a description of new command
line error reporting formats. Additional LIB-80 facilities are also
included for deleting or replacing various modules in a subprogram library.

E.1.0. OVERLAYS

LINK may be used to produce a simple tree structure of overlays as
shown in the diagram below:

OV5 OV6
I I

 I

 OV1 OV2 OV3 OV4
I I I I
--

|
 ROOT

In addition to producing ROOT.COM and ROOT.SYM files, LINK will
produce an OVL file and a SYM file for each overlay specified in the
command line. The OVL file consists of a 256-byte header containing the
load address and length of the overlay, followed by the absolute object
code. The origin of an overlay is the highest address of th: module below
it on the 'tree' rounded up to the next 128-byte boundary. The stack and
free space for the PL/I program will be located at the top of the highest
overlay linked, rounded up to the next 128-byte boundary. This address is
written to the console upon completion of the entire link and is patched
into the root module in the location '?MEMRY'. The SYM file contains only
those symbols which have not been declared in another module lower in the
'tree'.

The following restrictions must be observed when producing a system
of overlays with PL/I-80 and LINK:

84

Each overlay has one entry point by which it is entered. This entry point is
assumed by the overlay manager to be at the base (load address) of the overlay.

No upward references are allowed from a module to an entry point in an overlay
higher on the tree, other than the main entry point of the overlay as described
in 1. Downward references to entry points in overlays lower on the tree or in the
root module are allowed.

The overlays are not relocatable. Hence the root module must be a COM file.

Common blocks (Externals in PL/I) which are declared in one module may not be
initialized by a module higher in the tree. Any attempt to do so will be ignored
by LINK.

Overlays may be nested to a depth of 5 levels.

The default buffer located at 80H is used by the overlay manager, so user
programs should not depend on data stored in this buffer.

E.1.1. USING OVERLAYS IN PL/I PROGRAMS

There are two ways to use overlays in a PL/I program. The first method is
very straightfor--7ard, and will suffice for most applications. However, it has
the restrictions that all overlays must be on the default drive, and overlay
names may not be determined at run-time. The second method does not have these
restrictions, and involves a slightly more complicated calling sequence.

To use the first method, an overlay is simply declared as an entry constant
in the module where it is referenced. As an entry constant, it may have
parameters declared in a parameter list. The overlay itself is simply a PL/I
procedure, or group of procedures. For example, the following program is a root
module having one overlay:

root: procedure options (main);
declare ovl entry (char (15));
put skip list (‘root');
call ovl ('overlay l');
end root;

The overlay OV1.PLI appears as follows:

85

ovl: procedure (c);
declare c char (15);
put skip list (c)
end ovl;

Note that if parameters are passed to an overlay, it is the programmer's
responsibility to ensure that the number and type of the parameters are the same
in the calling program and the overlay itself.

To link these two programs into an overlay system, the following link
command would be used:

LINK ROOT(OV1)

(The command line syntax for linking overlays is described in detail in a later
section.)

LINK will produce four files from this command: ROOT.COM, ROOT.SYM, OVl.OVL and
OV1.SYM. When ROOT.COM is executed, it will first put the message 'root' out at the
console. The 'call ovl' statement will transfer control to the overlay manager.
The overlay manager loads the file OVl.OVL from the default drive at the proper
location above ROOT.COM and transfers control to it, passing the char (15)
parameter in the normal manner. The overlay then executes, producing the message A

overlay 1' at the console. It then return s directly to the statement following
the 'call ov1’ in root.pli, and execution continues from that point.

Using this method, if the overlay manager determines that the requested
overlay is already in memory, the overlay will not be reloaded before control is
transferred to it. There are several important notes regarding this first overlay
method:

The name associated with the overlay in the call and entry statements is the
actual name of the OVL file loaded by the overlay manager, so the two names must
agree. Since symbol names are truncated to 6 characters in the REL file produced
by PL/I-80, the names of the OVL files must be limited to 6 characters.

The name of the entry point to an overlay (the name of the procedure) need not
agree with the name used in the calling sequence. The same name should be used to
avoid confusion.

The overlay manager will only load overlays from the default drive (the drive
which was the default drive when execution of the root module began, regardless
of any changes to the default drive which may have occurred since then).

The names of the overlays are fixed - the source program must be edited,
recompiled and relinked to change the names of the overlays.

86

No non-standard PL/I statements are needed (the program is transportable to
other systems).

In some applications it is useful to have greater flexibility with
overlays, such as the ability to load overlays from different drives, or the
ability to determine the name of an overlay at run-time, say from the keyboard or
from a disk file. This is accomplished using a second overlay method.

In this case, an explicit entry point into the overlay manager must be
declared in the PL/I program as follows:

declare ?ovlay entry (char (10), fixed (1));

The first parameter is a character string specifying the name of the overlay to
load and an optional drive code in the standard CP/M format 'd:filename'. The
second parameter is the load flag. If the load flag is 1, the overlay manager
will load the specified overlay whether or not it is already in memory. If the
load flag is 0, the overlay will only be loaded if it is not already in memory.

The 'call ?ovlay' statement tells the overlay manager to load the requested
overlay, if needed. The overlay manager returns to the calling program, which
must then perform a dummy call to execute the overlay just processed by the
overlay manager. This allows a parameter list to be passed to the overlay.

The example shown in the first method above would appear as follows:

root: procedure options (main);
declare ?ovlay entry (char (10), fixed (1));
declare dummy entry (char (15));
declare name char (10);
put skip list (‘root'); name = 'OV1';
call ?ovlay (name, 0);
call dummy ('overlay l');
end root;

OV1.PLI would be the same as before.

At run-time the overlay manager would load OV1.OVL from the default drive,
since that is the current value of the variable 'name', and then return to the
calling program (in this case, root). At this point, the argument 'overlay 1'
would be set up according to the PL/I-80 parameter passing conventions. The 'call
dummy' transfers control to the overlay manager, which would simply transfer
control to the base address of the overlay whose name was just processed. When
OV1 is finished, it returns to the statement following the 'call dummy’
statement. Note that while in the example above, 'name' was set to 'OV1' in an
assignment statement, the overlay name could have been supplied as a character
string derived from some other source,

87

such as the operator's keyboard. Several important points must be observed when
using the second overlay technique:

A drive code may be specified so overlays may be loaded from drives other
than the default drive. If no drive is specified, the default drive is used
as described in Method 1.

Since the name of the overlay is specified in the character string (and not
by the entry symbol), it may be up to 8 characters in length.

If there are any parameters in the dummy call following the A call ?ovlay',
they must agree in number and type with the parameters in the procedure
declaration in the overlay.

E.1.2. SPECIFYING OVERLAYS IN THE COMMAND LINE

The syntax for specifying overlays is similar to that for linking without
overlays, except that each overlay specification is enclosed in parentheses. An
overlay specification may be in one of the following forms:

link root(ovl)
link root(ovl,part2,part3)

link root(ovl=partl,part2,part3)

The first command produces the file OVl.OVL from a file OV1.REL, while the
second command produces the OVl.OVL file from OV1.REL, PART2.REL, and PART3.REL.
In the last case, the OV1.OVL file is produced from PART1.RLE, PART2.REL, and
PART3.REL.

Note that a left parenthesis, which indicates the start of a new overlay
specification, also indicates the end of the group preceding it. In other words,
the following command line is invalid and will be flagged as an error:

LINK ROOT(OV1),MOREROOT

All files to be included at any point on the 'tree' must appear together, without
any intervening overlay specifications. Thus the following command is valid:

LINK ROOT,MOREROOT(OV1)

Any filename in the command line may be followed by a number of link
switches enclosed in square brackets, as described in the LINK-80 Operator's
Guide. Note that the overlay specifications are not set

88

off from the root module or from each other with commas. Spaces may be used
to improve readability.

Nesting of overlays is indicated in the command line by nesting
parentheses. The following command line could be used to link the overlay
system shown on the first page of the overlay description:

LINK ROOT (OV1) (OV2 (OV5) (OV6)) (OV3) (OV4)

E.1.3. SAMPLE LINK EXECUTION

In the following sample link operation, notice that OV1 is flagged as
an undefined symbol. LINK is simply indicating that OV1 has not been defined
in the current module, so it is assumed to be either the name of an overlay
or a dummy entry point to an overlay. When linking overlays, each entry
variable which refers to an overlay (by actual name or a dummy entry) will
appear as an undefined symbol. No symbols other than these actual or dummy
overlay entry points should be undefined.

A>LINK ROOT(OV1)
LINK 1. 1

PLILIB RQST ROOT 0100 ISYSINI 1A15 /SYSPRI/lA3A

UNDEFINED SYMBOLS:

Ov1

ABSOLUTE 0000
CODE SIZE 18BC (0100-19BB)
DATA SIZE 02A9 (lA90-lD38)
COMMON SIZE OOD4 (19BC-lA8F)
USE FACTOR 4E

LINKING OV1.OVL

PLILIB RQST

ABSOLUTE 0000
CODE SIZE 0024 (lD80-lDA3)
DATA SIZE0002 (lDA4-IDA5)
COMMON SIZE 0000
USE FACTOR 09
MODULE TOP lEO0

89

A>ROOT

root overlay 1
End of Execution
A>

E.1.4. RUN-TIME ERROR MESSAGES

The overlay manager may produce one of the following error messages:

ERROR (8) OVERLAY, NO FILE d:filename.OVL The indicated file could not be
found.

ERROR (9) OVERLAY, DRIVE d:filename.OVL
An invalid drive code was passed as a parameter to ?ovlay.

ERROR (10) OVERLAY, SIZE d:filename.OVL
The indicated overlay would overwrite the PL/I stack and/or free
space if it were loaded.

ERROR (11) OVERLAY, NESTING d:filename.OVL Loading the indicated overlay
would exceed the maximum nesting depth.

ERROR (12) OVERLAY, READ d:filename.OVL
Disk read error during overlay load, probably caused by
premature EOF.

E.1.5. OTHER OVERLAY SYSTEMS

A system of overlays may also be produced which is not a tree structure,
but rather contains a number of separate overlay areas, as shown in the figure
below:

91

|--------------------------|
| |
| |
|--------------------------| --
| OV2A | | |
| |----------| |
| | | |-- overlay area 2
	OV2B		
OV1A	OV1B	----------	
		OV1C	
--------------------------	--		
ROOT			

In such a system, the root module can reference any of the overlays. An
overlay may reference entry points in the root module or the main entry point of
any overlay which is not in the same overlay area.

Linking a system of overlays as shown above is done in a number of steps.
One link must be performed for each overlay area, since the address of the top of
the overlay area must be supplied to LINK when linking the next higher overlay
area. For example, the command

LINK ROOT (OVlA)(OVlB)(OVIC)

generates the three overlays in overlay area 1, and indicates the top address of
the module. This address is supplied as the load address in the next command:

LINK ROOT (OV2A[Lmod top]) (OV2B [Lmod top])

This command creates the overlays for overlay area 2 at the appropriate
address. Note that the overlay area which is the highest in memory should be
linked last, since the module top address is always written into the root module
at the end of the link.

At some point after the entire system has been linked, it may be desirable
to relink only one overlay, which may not be at the top overlay area. This may be
done using the $OZ switch to prevent generation of a root module which would
contain an erroneous ?MEMRY value.

It is the responsibility of the programmer to ensure that none of the
overlays overlap, and that no overlay attempts to reference

92

another overlay in the same overlay area.

E.1.6. THE LINK-80 "$" SWITCH

The '$' switch is used to control the source and destination devices
under LINK-80. The general form of the switch is:

$td

where 't' is a type and 'd' is a drive specifier. There are five types:

C - console

I - intermediate

L - library

0 - object

S - symbol

The drive specifier may be a letter in the range 'A' thru 'P' corresponding
to one of sixteen logical drives, or one of the following special characters:

X - console

Y - printer

Z - byte bucket

$Cd - Console

Messages which normally appear at the console may be directed to the
list device ($CY) or may be suppressed ($CZ). Once $CY or $CZ has been
specified, $CX may be used later in the command line to redirect console
messages to the console device.

$Id - Intermediate

Intermediate files generated by LINK are normally placed on the
default drive. The $1 switch allows the user to specify another drive to be
used by LINK for intermediate files.

$Ld - Library

LINK normally searches on the default drive for library files

93

which are automatically linked because of a request item in a REL file. The $L
switch instructs LINK to search the specified drive for these library files.

$Od - Object

LINK normally generates an object file on the same drive as the first REL
file in the command line, unless an output file with an explicit drive is
included in the command. The $0 switch instructs LINK to place the object file on
the drive specified by the character following the $0, or to suppress the
generation of an object file if the character following the $0 is a 'Z'.

$Sd - Symbol

LINK normally generates a symbol file on the same drive as the first REL
file in the command line, unless an output file with an explicit drive is
included in the command. The $S switch instructs LINK to place the symbol file on
the drive specified by the character following the $S, or to suppress the
generation of a symbol file if the character following the $S is a 'Z'.

A td’ character pairs following a '$A must not be separated by commas. The
entire group of $ switches is set off from any other switches by a comma, as
shown below:

LINK PART1[$SZ,$OD,$LB,Q1,PART2

LINK PART1[$SZODLB,Q1,PART2

LINK PART1[$SZ OD LBI,PART2[Q]

The three command lines above are equivalent.

The $I switch specifies the drive to be used for intermediate files during
the entire link operation. The other '$' switches may be changed in the command
line. The value of a '$A switch will remain in effect until it is changed as the
command line is processed from left to right. This is generally useful only when
linking overlays. For example:

LINK ROOT (OV1[$SZCZI)(OV2)(OV3)(OV4[$SACXI)

will suppress the SYM files and console output generated when OV1, OV2 and OV3
are linked. When OV4 is linked, the SYM file will be placed on drive A: and the
console output will be sent to the console device.

The NR and NL switches used in LINK 1.0 to suppress the recording and
listing of the symbol table are not recognized by LINK 1.1, since $SZ and $CZ can
be used to perform these functions.

94

E.1.7. THE REQUEST ITEM

Version 1.1 of PL/I-80 uses the request item (a specific bit pattern in a
REL file) to indicate to LINK that the PLILIB is to be searched. This is also how
the Microsoft compilers link their run-time libraries. When LINK processes a
library request, it first searches for an IRL file with the specified filename.
If there is no IRL file, it searches for a REL file of that name. Failing in both
searches, the error message

NO FILE: filename.REL

is produced, and LINK aborts. Libraries requested in this manner will appear in
the symbol table listed at the console with a value of 'RQST'.

E.1.8. COMMAND LINE ERRORS

The error messages 'FILE NAME ERROR' and 'INVALID SYNTAX' are no longer
generated. Instead, when a command line error of any kind is detected the command
tail is echoed up to the point where the error occurred, followed by a question
mark. For example:

LINK A, B, C; D A, B, C;?

LINK LONGFILENAME
LONGFILEN?

E.1.9. ADDITIONAL LIB-80 FACILITIES

Modules in a library may be deleted or replaced in a single command. The
names of the modules to be affected are enclosed in angle brackets immediately
following the name of the source file containing the modules. The following
examples demonstrate the use of this feature.

lib newlib=oldlib<modl>

lib newlib=oldlib<modl=filel>

lib newlib=oldlib<modl=>

lib newlib=oldlib<modl,mod2=file2,mod3=>

In the first case, a new library NEWLIB.REL is created which is the same as
OLDLIB.REL except that the module MOD1 is replaced by the

95

contents of the file MOD1.REL. This form should be used if the name of the module
being replaced is the same as the filename of the REL file replacing the module.

In the second case, the module MOD1 is replaced by the contents of the file
FILE1.REL in the new library NEWLIB.REL. This form is used to replace a module
when the name of the module is not the same as the name of the file which is to
replace it. Note that this form must be used if the filename has more than 6
characters, since module names in the REL file are truncated to 6 characters.

When the third command is used, NEWLIB.REL is created from OLDLIB.REL
without the module MOD1.

The last command form demonstrates that a number of replace and/or delete
instructions may be included within the angle brackets.

E.2.0. MULTI-LINE COMMANDS

If a command does not fit on a single line (126 characters), the command
may be extended by terminating the command line with an ampersand W. The ampersand
may appear after any character of the command, and need not follow a file name.
LINK-80 responds with an asterisk (*) on the next line. At this point the command
line may be continued. Any number of lines ending with an ampersand may be
entered. The last line of the command is terminated with a carriage return. Note
that XSUB may be used to submit multi-line LTNK-80 commands.

Example:

A>link main, iomodl, iomod2, iomod3, iomod4, iomod5,&
LINK 1.3
*libl[s], lib2fsl, lib3fsl, lib4&
*[s], lastmodrp2000&
*,d2001

(. . . symbol table and memory map . . .

96

 APPENDIX F

XREF

XREF is an assembly-language cross reference utility that can be applied to
print (PRN) files produced by MAC or RMAC in order to provide a summary of
variable usage throughout the program. The purpose of this appendix is to provide
the information necessary for operation of the XREF utility.

F.1.0. XREF OPERATION

XREF is normally invoked by issuing the command:

XREF filename

where the "filename" refers to two input files prepared using MAC or RMAC with
assumed (and unspecified) file types of "PRN" and "SYM" and one output file with
an assumed (and unspecified) file type of "XRF". Specifically, XREF reads the
file "filename.PRN" line by line, attaches a line number prefix to each line and
writes each prefixed line to the output file "filename.XRF". During this process,
each line is scanned for any symbols that exist in the file "filename.SYM". Upon
completion of this copy operation, XREF appends to the file "filename.XRF" a
cross reference report that lists all the line numbers where each symbol in
"filename.SYM" appears. In addition each line number reference where the
referenced symbol is the firs token on the line is flagged with a "#" character.
Also, the value of each symbol, as determined by MAC or RMAC and placed in the
symbol table file "filename.SYM", is reported for each symbol.

As an option, the "filename" specification can be prefaced with a drive
code in the standard CP/M format [d:]. When the drive code i s specified all the
files described above are associated with the specified drive. Otherwise, the
files are associated with the default drive. Another option allows the user to
direct the output file directly to the "LST:" device instead of to the file
"filename.XRF". This option is invoked by adding the string "$p" to the command
line as follows:

XREF filename $p

XREF allocates space for symbols and symbol references dynamically during
execution. If no memory is available for an attempted symbol or symbol reference
allocation, an error message is issued and XREF is terminated.

97

F.1.1. XREF ERROR MESSAGES

No SYM file - This message is issued if the file "filename.SYM" is not present on
the default or specified drive.

No PRN file - This message is issued if the file "filename.PRN" is not present on
the default or specified drive.

Symbol table overflow - This message is issued if no space is available for an
attempted symbol allocation.

Invalid SYM file format - This message is issued when an invalid "filename.SYM"
file is read. Specifically, a line in the SYM file not terminated with a CRLF
will force this error message.

Symbol table reference overflow - This message is issued if no space is available
for an attempted symbol reference allocation.

"filename.XRF" make error - This message is issued if BDOS returns an error code
after a "filename.XRF" make request. This error code usually indicates that no
directory space exists on the default or specified drive.

"filename.XRF" close error - This message is issued if BDOS returns an error code
after a "filename.XRF" close request.

"filename.XRF" write error - This message is issued if BDOS returns an error code
after a "filename.XRF" write request. This error code usually indicates that no
unallocated data blocks are available or no directory space exists on the default
or specified drive.

	CP/M Features and Facilities
	LINK-80 OPERATOR'S GUIDE

